LEVENBERG-MARQUARDT METHOD WITH A GENERAL LM PARAMETER AND A NONMONOTONE TRUST REGION TECHNIQUE

被引:0
作者
Zhao, Luyao [1 ]
Tang, Jingyong [1 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 04期
关键词
Nonlinear equations; Levenb erg-Marquardt method; nonmono- tone technique; local error bound; weighted linear complementarity problem; CONVERGENCE PROPERTIES; ALGORITHM; SYSTEMS;
D O I
10.11948/20220441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new Levenb erg -Marquardt (LM) method for solving the nonlinear equations. The new LM method takes a general LM parameter lambda k = mu k [(1 - 0 ) IF k I delta + 0 IIJ kT F k e ] where 0 is an element of [0 , 1] and delta is an element of (0 , 3) and adopts a nonmonotone trust region technique to ensure the global convergence. Under the local error bound condition, we prove that the new LM method has at least a superlinear convergence rate with the order min { 1 + delta, 4 - delta, 2 } . We also apply the new LM method to solve the nonlinear equations arising from the weighted linear complementarity problem. Numerical experiments indicate that the new LM method is efficient and promising.
引用
收藏
页码:1959 / 1976
页数:18
相关论文
共 31 条