Connectivity and Synchronization in Bounded Confidence Kuramoto Oscillators

被引:1
作者
Srivastava, Trisha [1 ]
Bernardo, Carmela [2 ]
Altafini, Claudio [2 ]
Vasca, Francesco [1 ]
机构
[1] Univ Sannio, Dept Engn, I-82100 Benevento, Italy
[2] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
关键词
Oscillators; Couplings; Synchronization; Frequency synchronization; Analytical models; Steady-state; Mathematical models; Kuramoto oscillators; networks; bounded confidence opinion dynamics; synchronization; clustering; HEGSELMANN-KRAUSE MODEL; STABILITY; DYNAMICS; NETWORKS;
D O I
10.1109/LCSYS.2024.3405379
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Frequency synchronization of bounded confidence Kuramoto oscillators is analyzed. The dynamics of each oscillator is defined by the average of the phase differences with its neighbors, where any two oscillators are considered neighbors if their geodesic distance is less than a certain confidence threshold. A phase-dependent graph is defined whose nodes and edges represent the oscillators and their connections, respectively. It is studied how the connectivity of the graph influences steady-state behaviors of the oscillators. It is proved that the oscillators synchronize asymptotically if the subgraph of each partition, possibly not complete, eventually remains constant over time. Simulation results show the application of the theoretical findings also in the presence of oscillators having different natural frequencies.
引用
收藏
页码:874 / 879
页数:6
相关论文
共 23 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
[Anonymous], 2013, Rev. E, Stat.Phys. Plasmas Fluids Relat. Interdiscip. Top., V87
[3]  
[Anonymous], 2020, Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., V102
[4]  
Bernardo C., 2022, Eur.J.Control, V68, P1
[5]   Bounded confidence opinion dynamics: A survey [J].
Bernardo, Carmela ;
Altafini, Claudio ;
Proskurnikov, Anton ;
Vasca, Francesco .
AUTOMATICA, 2024, 159
[6]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[7]   Inertial Hegselmann-Krause Systems [J].
Chazelle, Bernard ;
Wang, Chu .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3905-3913
[8]  
DeLellis P, 2018, 2018 EUROPEAN CONTROL CONFERENCE (ECC), P2194, DOI 10.23919/ECC.2018.8550350
[9]   State estimation of heterogeneous oscillators by means of proximity measurements [J].
DeLellis, Pietro ;
Garofalo, Franco ;
Lo Iudice, Francesco ;
Mancini, Giovanni .
AUTOMATICA, 2015, 51 :378-384
[10]   Opinion dynamics of modified Hegselmann-Krause model in a group-based population with heterogeneous bounded confidence [J].
Fu, Guiyuan ;
Zhang, Weidong ;
Li, Zhijun .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 419 :558-565