Controlled integration of InP nanoislands with CMOS-compatible Si using nanoheteroepitaxy approach

被引:1
|
作者
Kamath, Anagha [1 ]
Ryzhak, Diana [2 ]
Rodrigues, Adriana [1 ]
Kafi, Navid [1 ]
Golz, Christian [1 ]
Spirito, Davide [2 ]
Skibitzki, Oliver [2 ]
Persichetti, Luca [3 ,4 ]
Schmidbauer, Martin [5 ]
Hatami, Fariba [1 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Leibniz Inst Innovat Mikroelekt, IHP, Technol Pk 25, D-15236 Frankfurt, Oder, Germany
[3] Univ Roma Tre, Dipartimento Sci, Viale G Marconi 446, I-00146 Rome, Italy
[4] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[5] Leibniz Inst Kristallzuchtung, Max Born Str 2, D-12489 Berlin, Germany
关键词
Indium phosphide; Silicon nanotips; CMOS technology; Nanoheteroepitaxy; Optoelectronics; OPTICAL-PROPERTIES; SEMICONDUCTOR; EPITAXY;
D O I
10.1016/j.mssp.2024.108585
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Indium phosphide (InP) nanoislands are grown on pre-patterned Silicon (001) nanotip substrate using gassource molecular-beam epitaxy via nanoheteroepitaxy approach. The study explores the critical role of growth temperature in achieving selectivity, governed by diffusion length. Our study reveals that temperatures of about 480 degrees C and lower, lead to parasitic growth, while temperatures about 540 degrees C with an indium growth rate of about 0.7 & Aring;.s-1 and phosphine flux of 4 sccm inhibit selective growth. The establishment of an optimal temperature window for selective InP growth is demonstrated for a temperature range of 490 degrees C to 530 degrees C. Comprehensive structural and optical analyses using atomic force microscopy, Raman spectroscopy, x-ray diffraction, and photoluminescence confirm a zincblende structure of indium phosphide with fully relaxed islands. These results demonstrate the capability to precisely tailor the position of InP nanoislands through a noncatalytic nanoheteroepitaxy approach, marking a crucial advancement in integrating InP nanoisland arrays on silicon devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] InAs Nanowires Elevated on Si(001) by Nanopedestals for CMOS-Compatible Fabrication
    Lee, Seung-Chang
    Jiang, Yingbing
    Brueck, Steve R. J.
    ACS APPLIED NANO MATERIALS, 2025, 8 (13) : 6445 - 6453
  • [22] 6.25-Gb/s Optical Receiver Using A CMOS-Compatible Si Avalanche Photodetector
    Kang, Hyo-Soon
    Lee, Myung-Jae
    Choi, Woo-Young
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2008, 12 (04) : 217 - 220
  • [23] A CMOS-compatible, integrated approach to hyper- and multispectral imaging
    Lambrechts, Andy
    Gonzalez, Pilar
    Geelen, Bert
    Soussan, Philippe
    Tack, Klaas
    Jayapala, Murali
    2014 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2014,
  • [24] Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001)
    Wiesner, M.
    Schulz, W-M
    Kessler, C.
    Reischle, M.
    Metzner, S.
    Bertram, F.
    Christen, J.
    Rossbach, R.
    Jetter, M.
    Michler, P.
    NANOTECHNOLOGY, 2012, 23 (33)
  • [25] Engineering Chalcogenide Materials - From Bulk Optics to CMOS-compatible Microelectronic Integration
    Richardson, Kathleen
    Mayer, Theresa
    Baleine, C.
    INTERNATIONAL SYMPOSIUM ON FUNCTIONAL DIVERSIFICATION OF SEMICONDUCTOR ELECTRONICS 2 (MORE-THAN-MOORE 2), 2014, 61 (06): : 73 - 79
  • [26] A CMOS-Compatible Chip-to-Chip 3D Integration Platform
    Temiz, Yuksel
    Zervas, Michael
    Guiducci, Carlotta
    Leblebici, Yusuf
    2012 IEEE 62ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2012, : 555 - 560
  • [27] CMOS-compatible through silicon vias for 3D process integration
    Tsang, Cornelia K.
    Andry, Paul S.
    Sprogis, Edmund J.
    Patel, Chirag S.
    Webb, Bucknell C.
    Manzer, Dennis G.
    Knickerbocker, John U.
    ENABLING TECHNOLOGIES FOR 3-D INTEGRATION, 2007, 970 : 145 - +
  • [28] Recent advances in CMOS-compatible synthesis and integration of 2D materials
    Katiyar, Ajit Kumar
    Choi, Jonggyu
    Ahn, Jong-Hyun
    NANO CONVERGENCE, 2025, 12 (01):
  • [29] CMOS-compatible Si3N4 waveguides for optical biosensing
    Muellner, Paul
    Melnik, Eva
    Koppitsch, Guenther
    Kraft, Jochen
    Schrank, Franz
    Hainberger, Rainer
    EUROSENSORS 2015, 2015, 120 : 578 - 581
  • [30] Supercontinuum enhancement using Bragg solitons on a CMOS-compatible chip
    Sahin, Ezgi
    Blanco-Redondo, Andrea
    Ng, Doris K. T.
    Png, Ching E.
    Eggleton, Benjamin J.
    Tan, Dawn T. H.
    NONLINEAR OPTICS AND APPLICATIONS XI, 2019, 11026