Solitons supported by a self-defocusing trap in a fractional-diffraction waveguide

被引:5
作者
dos Santos, Mateus C. P. [1 ]
Malomed, Boris A. [2 ,3 ,4 ]
Cardoso, Wesley B. [1 ]
机构
[1] Univ Fed Goias, Inst Fis, BR-74690970 Goiania, GO, Brazil
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, POB 39040, Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Light Matter Interact, POB 39040, Tel Aviv, Israel
[4] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
基金
以色列科学基金会;
关键词
Fractional nonlinear Schr & ouml; dinger equation; Stability analysis; Localized solutions; Defocusing nonlinearity; Spatial soliton; GAP SOLITONS; SCHRODINGER-EQUATIONS; DYNAMICS;
D O I
10.1016/j.cjph.2024.01.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a model which gives rise to self -trapping of fundamental and higher -order localized states in a one-dimensional nonlinear Schr & ouml;dinger equation with fractional diffraction and the strength of the self -defocusing nonlinearity growing steeply enough from the center to periphery. The model can be implemented in a planar optical waveguide. Stability regions are identified for the fundamental and dipole (single -node) states in the plane of the L & eacute;vy index and the total power (norm), while states of higher orders are unstable. Evolution of unstable states is investigated too, leading to spontaneous conversion towards stable modes with fewer node.
引用
收藏
页码:1474 / 1482
页数:9
相关论文
共 42 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[3]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[4]   Solitons supported by spatially inhomogeneous nonlinear losses [J].
Borovkova, Olga V. ;
Kartashov, Yaroslav V. ;
Vysloukh, Victor A. ;
Lobanov, Valery E. ;
Malomed, Boris A. ;
Torner, Lluis .
OPTICS EXPRESS, 2012, 20 (03) :2657-2667
[5]   Bright solitons from defocusing nonlinearities [J].
Borovkova, Olga V. ;
Kartashov, Yaroslav V. ;
Torner, Lluis ;
Malomed, Boris A. .
PHYSICAL REVIEW E, 2011, 84 (03)
[6]   ON RIESZ DERIVATIVE [J].
Cai, Min ;
Li, Changpin .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (02) :287-301
[7]   Bright solitons from the nonpolynomial Schrodinger equation with inhomogeneous defocusing nonlinearities [J].
Cardoso, W. B. ;
Zeng, J. ;
Avelar, A. T. ;
Bazeia, D. ;
Malomed, B. A. .
PHYSICAL REVIEW E, 2013, 88 (02)
[8]   Spontaneous symmetry breaking in purely nonlinear fractional systems [J].
Chen, Junbo ;
Zeng, Jianhua .
CHAOS, 2020, 30 (06)
[9]   Optical solitons, self-focusing, and wave collapse in a space-fractional Schrodinger equation with a Kerr-type nonlinearity [J].
Chen, Manna ;
Zeng, Shihao ;
Lu, Daquan ;
Hu, Wei ;
Guo, Qi .
PHYSICAL REVIEW E, 2018, 98 (02)
[10]   Truncated-Bloch-wave solitons in nonlinear fractional periodic systems [J].
Dong, Liangwei ;
Tian, Zhaoxia .
ANNALS OF PHYSICS, 2019, 404 :57-65