In this paper, we discuss a novel model reduction framework for linear structured dynamical systems. The transfer functions of these systems are assumed to have a special structure, for example, coming from second-order linear systems or time-delay systems, and they may also have parameter dependencies. Firstly, we investigate the connection between classic interpolation-based model reduction methods with the reachability and observability subspaces of linear structured parametric systems. We show that if enough interpolation points are taken, the projection matrices of interpolation-based model reduction encode these subspaces. Consequently, we are able to identify the dominant reachable and observable subspaces of the underlying system. Based on this, we propose a new model reduction algorithm combining these features and leading to reduced-order systems. Furthermore, we discuss computational aspects of the approach and its applicability to a large-scale setting. We illustrate the efficiency of the proposed approach with several numerical large-scale benchmark examples.