Dependence of Zel'dovich number on pressure and temperature in lean hydrogen-air mixtures

被引:0
作者
Mousavi, Seyed Morteza [1 ]
Lipatnikov, Andrei N. [1 ]
机构
[1] Chalmers Univ Technol, Dept Mech & Maritime Sci, Div Energy Convers & Prop Syst ECaPS, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Premixed combustion; Zel'dovich number; Laminar flame simulations; Elevated pressures and temperatures; LIMIT; PROPAGATION; FLAMES;
D O I
10.1016/j.proci.2024.105501
中图分类号
O414.1 [热力学];
学科分类号
摘要
Simulations of unperturbed lean hydrogen-air flames were performed using three state-of-the-art chemical mechanisms under various conditions: pressure 1 <= P <= 50 atm, unburned gas temperature 300 <= Tu <= 900 K, and the equivalence ratio 0.3 <= Phi <= 0.5. Multicomponent diffusion and Soret effect were considered. The computed results show that, under certain conditions, (i) differently defined Zel'dovich numbers decrease with increasing P and (ii) sensitivity coefficients of Ze to the rates of the most important chain-branching reaction (R1) H + O2--OH+O and chain-terminating reaction (R9) H + O2+M=HO2+M change their signs from negative and positive, respectively, to positive and negative, respectively, at high P. Analysis of the computed data shows that this transition occurs when the rates of the chain-terminating reaction (R14) 2HO2--H2O2+O2 and the chainbranching reaction (R15) H2O2+M = 2OH+M are almost equal. Under such conditions, these two rates are much higher than a rate of another reaction that involves H2O2 in the largest parts of flame reaction zones. Moreover, in the vicinity of the upstream boundaries of the reaction zones, these two rates are significantly higher than a rate of another bimolecular reaction that involves HO2. Accordingly, in such a flame zone, whose location controls Zel'dovich number, almost all H2O2 formed in reaction (R14) is immediately converted to two radicals OH via reaction (R15). Therefore, the entire root of reactions (R9)->(R14)->(R15) becomes chainpropagating root, with its rate being significantly increased by P, because reactions (R9) and (R15) are termolecular ones. The emphasized effects are mitigated by both Tuand Phi, i.e., they are observed at higher pressure if Tuor Phi is increased. The explored negative pressure-dependence of Zel'dovich number should be considered when analyzing experimental or numerical data obtained from lean hydrogen-air turbulent flames under elevated pressures or when modeling such flames.
引用
收藏
页数:8
相关论文
共 30 条
  • [21] Flame dynamics
    Matalon, Moshe
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 57 - 82
  • [22] Are differential diffusion effects of importance when burning hydrogen under elevated pressures and temperatures?
    Mousavi, Seyed Morteza
    Lipatnikov, Andrei N.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 1048 - 1058
  • [23] The effect of pressure on lean premixed hydrogen-air flames
    Rieth, Martin
    Gruber, Andrea
    Chen, Jacqueline H.
    [J]. COMBUSTION AND FLAME, 2023, 250
  • [24] Enhanced burning rates in hydrogen-enriched turbulent premixed flames by diffusion of molecular and atomic hydrogen
    Rieth, Martin
    Gruber, Andrea
    Williams, Forman A.
    Chen, Jacqueline H.
    [J]. COMBUSTION AND FLAME, 2022, 239
  • [25] Recent advances in understanding of flammability characteristics of hydrogen
    Sanchez, Antonio L.
    Williams, Forman A.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2014, 41 : 1 - 55
  • [26] The chemistry involved in the third explosion limit of H2-O2 mixtures
    Sanchez, Antonio L.
    Fernandez-Tarrazo, Eduardo
    Williams, Forman A.
    [J]. COMBUSTION AND FLAME, 2014, 161 (01) : 111 - 117
  • [27] Some developments in premixed combustion modeling
    Sivashinsky, GI
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2002, 29 : 1737 - 1761
  • [28] Pressure and fuel effects on turbulent consumption speeds of H2/CO blends
    Venkateswaran, Prabhakar
    Marshall, Andrew
    Seitzman, Jerry
    Lieuwen, Tim
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 1527 - 1535
  • [29] Zeldovich YB, 1985, The mathematical theory of combustion and explosions
  • [30] Zeldowitsch JB, 1938, ACTA PHYSICOCHIM URS, V9, P341