Arbuscular mycorrhizal fungi attenuate negative impact of drought on soil functions

被引:3
|
作者
Tang, Bo [1 ,2 ]
Man, Jing [1 ,2 ]
Lehmann, Anika [1 ,2 ]
Rillig, Matthias C. [1 ,2 ]
机构
[1] Free Univ Berlin, Inst Biol, Berlin, Germany
[2] Berlin Brandenburg Inst Adv Biodivers Res BBIB, Berlin, Germany
关键词
arbuscular mycorrhizal (AM) fungi; drought; global change; meta-analysis; multifunctionality; soil function; MICROBIAL COMMUNITIES; WATER RELATIONS; EXTERNAL HYPHAE; ORGANIC-MATTER; GLOBAL CHANGE; CARBON FLOW; METAANALYSIS; GROWTH; ROOTS; RESISTANCE;
D O I
10.1111/gcb.17409
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta-analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta-analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature-based solution to sustaining multiple soil functions in a world where drought events are intensifying. Our study including meta-analysis and greenhouse experiment showed that arbuscular mycorrhizal (AM) fungi promote multiple soil functions and attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought.image
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Impact of mycorrhizal soil fertility proteins and Arbuscular mycorrhizal application to combat drought stress in maize plants
    Sumathi C. Samiappan
    P. Mahalakshmi
    Rajesh Pandiyan
    Journal of Plant Biochemistry and Biotechnology, 2021, 30 : 906 - 917
  • [22] Impact of mycorrhizal soil fertility proteins and Arbuscular mycorrhizal application to combat drought stress in maize plants
    Samiappan, Sumathi C.
    Mahalakshmi, P.
    Pandiyan, Rajesh
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2021, 30 (04) : 906 - 917
  • [23] Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota
    Svenningsen, Nanna B.
    Watts-Williams, Stephanie J.
    Joner, Erik J.
    Battini, Fabio
    Efthymiou, Aikaterini
    Cruz-Paredes, Carla
    Nybroe, Ole
    Jakobsen, Iver
    ISME JOURNAL, 2018, 12 (05): : 1296 - 1307
  • [24] INTERACTIONS OF ARBUSCULAR MYCORRHIZAL FUNGI WITH PLANTS AND SOIL MICROFLORA
    Jamiolkowska, Agnieszka
    Ksiezniak, Andrzej
    Hetman, Beata
    Kopacki, Marek
    Skwarylo-Bednarz, Barbara
    Galazka, Anna
    Thanoon, Ali Hamood
    ACTA SCIENTIARUM POLONORUM-HORTORUM CULTUS, 2017, 16 (05): : 89 - 95
  • [25] Interactions between arbuscular mycorrhizal fungi and soil bacteria
    Mohammad Miransari
    Applied Microbiology and Biotechnology, 2011, 89 : 917 - 930
  • [26] Potential of arbuscular mycorrhizal fungi for soil health: A review
    Junling ZHANG
    Ruotong ZHAO
    Xia LI
    Jiangzhou ZHANG
    Pedosphere, 2024, 34 (02) : 279 - 288
  • [27] Disentangling the contributions of arbuscular mycorrhizal fungi to soil multifunctionality
    Wang, Fayuan
    Rengel, Zed
    PEDOSPHERE, 2024, 34 (02) : 269 - 278
  • [28] Potential of arbuscular mycorrhizal fungi for soil health: A review
    Zhang, Junling
    Zhao, Ruotong
    Li, Xia
    Zhang, Jiangzhou
    PEDOSPHERE, 2024, 34 (02) : 279 - 288
  • [29] Disentangling the contributions of arbuscular mycorrhizal fungi to soil multifunctionality
    Fayuan WANG
    Zed RENGEL
    Pedosphere, 2024, 34 (02) : 269 - 278
  • [30] Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota
    Nanna B Svenningsen
    Stephanie J Watts-Williams
    Erik J Joner
    Fabio Battini
    Aikaterini Efthymiou
    Carla Cruz-Paredes
    Ole Nybroe
    Iver Jakobsen
    The ISME Journal, 2018, 12 : 1296 - 1307