Arbuscular mycorrhizal fungi attenuate negative impact of drought on soil functions

被引:3
|
作者
Tang, Bo [1 ,2 ]
Man, Jing [1 ,2 ]
Lehmann, Anika [1 ,2 ]
Rillig, Matthias C. [1 ,2 ]
机构
[1] Free Univ Berlin, Inst Biol, Berlin, Germany
[2] Berlin Brandenburg Inst Adv Biodivers Res BBIB, Berlin, Germany
关键词
arbuscular mycorrhizal (AM) fungi; drought; global change; meta-analysis; multifunctionality; soil function; MICROBIAL COMMUNITIES; WATER RELATIONS; EXTERNAL HYPHAE; ORGANIC-MATTER; GLOBAL CHANGE; CARBON FLOW; METAANALYSIS; GROWTH; ROOTS; RESISTANCE;
D O I
10.1111/gcb.17409
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta-analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta-analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature-based solution to sustaining multiple soil functions in a world where drought events are intensifying. Our study including meta-analysis and greenhouse experiment showed that arbuscular mycorrhizal (AM) fungi promote multiple soil functions and attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought.image
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi
    Lehmann, Anika
    Leifheit, Eva F.
    Feng, Linshan
    Bergmann, Joana
    Wulf, Anja
    Rillig, Matthias C.
    SOIL ECOLOGY LETTERS, 2022, 4 (01) : 32 - 44
  • [2] Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea
    Hashem, Abeer
    Kumar, Ashwani
    Al-Dbass, Abeer M.
    Alqarawi, Abdulaziz A.
    Al-Arjani, Al-Bandari Fahad
    Singh, Garima
    Farooq, Muhammad
    Abd Allah, Elsayed Fathi
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2019, 26 (03) : 614 - 624
  • [3] Impact of wildfire on soil characteristics and arbuscular mycorrhizal fungi
    Palta, Sahin
    Ozel, Halil Baris
    Kanbur, Sinem
    de Souza, Tancredo Augusto Feitosa
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (07)
  • [4] Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota
    Svenningsen, Nanna B.
    Watts-Williams, Stephanie J.
    Joner, Erik J.
    Battini, Fabio
    Efthymiou, Aikaterini
    Cruz-Paredes, Carla
    Nybroe, Ole
    Jakobsen, Iver
    ISME JOURNAL, 2018, 12 (05) : 1296 - 1307
  • [5] Disentangling the contributions of arbuscular mycorrhizal fungi to soil multifunctionality
    Wang, Fayuan
    Rengel, Zed
    PEDOSPHERE, 2024, 34 (02) : 269 - 278
  • [6] Defoliation modifies the impact of drought on the transfer of recent plant-assimilated carbon to soil and arbuscular mycorrhizal fungi
    Xu, Tianyang
    Johnson, David
    Bardgett, Richard D.
    PLANT AND SOIL, 2024, : 693 - 711
  • [7] Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis
    Chandrasekaran, Murugesan
    Paramasivan, Manivannan
    PLANT AND SOIL, 2022, 480 (1-2) : 295 - 303
  • [8] Effect of arbuscular mycorrhizal fungi on drought resistance of clover
    Meddich, A
    Oihabi, A
    Abbas, Y
    Bizid, E
    AGRONOMIE, 2000, 20 (03): : 283 - 295
  • [9] Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants
    Nguyen Hong Duc
    Csintalan, Zsolt
    Posta, Katalin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 132 : 297 - 307
  • [10] Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review
    Jamiolkowska, Agnieszka
    Ksiezniak, Andrzej
    Galazka, Anna
    Hetman, Beata
    Kopacki, Marek
    Skwarylo-Bednarz, Barbara
    INTERNATIONAL AGROPHYSICS, 2018, 32 (01) : 133 - 140