Effect of fibre-reinforced microbial-induced calcite precipitation on the mechanical properties of coastal soil

被引:1
|
作者
Rawat, Vikas [1 ]
Satyam, Neelima [1 ]
机构
[1] Indian Inst Technol Indore, Dept Civil Engn, Indore 453552, Madhya Pradesh, India
关键词
biocementation; calcite content; coastal soil erosion; fibre-reinforced; MICP; INDUCED CARBONATE PRECIPITATION; SAND; MICP;
D O I
10.1111/sum.13078
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Coastal erosion is a global environmental concern, threatening infrastructure, human livelihoods and ecosystems. Recently, microbial-induced calcite precipitation (MICP) has emerged as a promising ground improvement technique. The present study examined the effects of adding three different fibre reinforcements, namely carbon, basalt and polypropylene, on the physical and mechanical properties of coastal soil through MICP. The fibre content used was 0.20%, 0.40% and 0.60% of soil weight. A comprehensive biotreatment investigation was conducted using Sporosarcina pasteurii (S. pasteurii) in a 0.5 molar cementation solution. The samples prepared for this study had aspect ratios of 2:1 and 1:1. These samples were subjected to biotreatment, consisting of a 24-h cycle for 9 and 18 days. Unconfined compressive strength (UCS), split tensile strength (STS) and ultrasonic pulse velocity (UPV) tests were conducted on the biotreated samples to evaluate the effect of fibre reinforcement on the mechanical properties of the biotreated samples. The amount of calcite precipitation, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to interpret biocementation. Results suggest that adding fibres to the MICP process enhances the mechanical properties of coastal soil. The optimum fibre content for carbon and basalt fibre was 0.40%, whereas, for polypropylene, it stood at 0.20%. The maximum UCS, STS, UPV and average CaCO3 were observed in a basalt fibre-reinforced biotreated sample with a fibre content of 0.40%, subjected to 18-day biotreatment. Conversely, the sample without fibre-reinforcement, biotreated for 9 days, exhibited the lowest values for these parameters. Samples subjected to 18 days of treatment have higher values of UCS, STS, UPV and CaCO3 content than 9-day-treated soil samples. SEM revealed the presence of CaCO3 precipitates on the surfaces of soil grains and their contact points, and the EDS spectrum corroborated this observation.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] An experimental study of sandy clayey purple soil enhanced through microbial-induced calcite precipitation
    Shen Tai-yu
    Wang Shi-ji
    Xue Le
    Li Xian
    He Bing-hui
    ROCK AND SOIL MECHANICS, 2019, 40 (08) : 3115 - 3124
  • [32] Plasticity characteristics of lateritic soil treated with Sporosarcina pasteurii in microbial-induced calcite precipitation application
    Osinubi, K. J.
    Eberemu, A. O.
    Gadzama, E. W.
    Ijimdiya, T. S.
    SN APPLIED SCIENCES, 2019, 1 (08):
  • [33] Evaluation of microbial-induced calcite precipitation performance for soil surface improvement and toxicity assessment of the biostabilizer
    Khalaj, Sarah
    Naseri, Hamidreza
    Talebi, Marjan
    Ghale, Rouzbeh Almasi
    Tabandeh, Fatemeh
    HELIYON, 2024, 10 (16)
  • [34] Mechanism of Sand Cementation with an Efficient Method of Microbial-Induced Calcite Precipitation
    Wang, Lu
    Liu, Shuhua
    MATERIALS, 2021, 14 (19)
  • [35] Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation
    Montoya, B. M.
    Dejong, J. T.
    Boulanger, R. W.
    GEOTECHNIQUE, 2013, 63 (04): : 302 - 312
  • [36] Repair of Cracks in Concrete with the Microbial-Induced Calcite Precipitation (MICP) Method
    Ozhan, Hacer Bilir
    Yildirim, Musa
    Ogut, Hamdi
    Oz, Hilal Girgin
    SLOVAK JOURNAL OF CIVIL ENGINEERING, 2023, 31 (04) : 1 - 8
  • [37] Effect of Microbial-Induced Calcite Precipitation on Surface Erosion and Scour of Granular Soils Proof of Concept
    Bao, Ruotian
    Li, Junhong
    Li, Lin
    Cutright, Teresa J.
    Chen, Long
    Zhu, Jiahua
    Tao, Junliang
    TRANSPORTATION RESEARCH RECORD, 2017, (2657) : 10 - 18
  • [38] The strength properties of a fibre-reinforced engineered soil
    Jones, MJ
    McKinley, JD
    Ellis, DG
    PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING VOLS 1-3, 2001, : 1605 - 1608
  • [39] Direct Shear Creep Characteristics of Sand Treated with Microbial-Induced Calcite Precipitation
    Yuan, Jie
    Lei, Donglin
    Shan, Yi
    Tong, Huawei
    Fang, Xiaotian
    Zhao, Jitong
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2022, 20 (07) : 763 - 777
  • [40] Mechanical properties of natural fibre-reinforced composites
    Bhowmick, Manik
    Mukhopadhyay, Samrat
    Alagirusamy, Ramasamy
    TEXTILE PROGRESS, 2012, 44 (02) : 85 - 140