Robot path planning algorithm with improved DDPG algorithm

被引:1
|
作者
Lyu, Pingli [1 ]
机构
[1] Xuzhou Coll Ind Technol, Sch Informat Engn, Xuzhou 221140, Jiangsu Provinc, Peoples R China
来源
INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM | 2025年 / 19卷 / 02期
关键词
Deep reinforcement learning; Path planning; Artificial potential field; Mobile robot; DDPG;
D O I
10.1007/s12008-024-01834-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various functionalities such as autonomous planning, behavior control, and environment sensing. Path planning is crucial for robot mobility, enabling them to navigate autonomously. We propose an improvement to the deep deterministic policy gradient (DDPG) method by leveraging deep reinforcement learning algorithms. Through extensive experimentation, our method demonstrates superior performance compared to traditional DDPG, with notable reductions in training time and iterations required to reach targets. Additionally, it reduces dead zone encounters during travel and enhances convergence speed. Our findings contribute fresh insights and strategies for enhancing mobile robot path planning in unfamiliar environments. Future research will explore further advancements, particularly in addressing dynamic obstacles and optimizing real-world navigation efficiency.
引用
收藏
页码:1123 / 1133
页数:11
相关论文
共 50 条
  • [1] Mobile Robot Path Planning Based on Improved DDPG Reinforcement Learning Algorithm
    Dong, Yuansheng
    Zou, Xingjie
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 52 - 55
  • [2] SLP-Improved DDPG Path-Planning Algorithm for Mobile Robot in Large-Scale Dynamic Environment
    Chen, Yinliang
    Liang, Liang
    SENSORS, 2023, 23 (07)
  • [3] Path planning algorithm in complex environment based on DDPG and MPC
    Xue, Junxiao
    Kong, Xiangyan
    Wang, Gang
    Dong, Bowei
    Guan, Haiyang
    Shi, Lei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (01) : 1817 - 1831
  • [4] Improved RRT* Algorithm for Disinfecting Robot Path Planning
    Wang, Haotian
    Zhou, Xiaolong
    Li, Jianyong
    Yang, Zhilun
    Cao, Linlin
    SENSORS, 2024, 24 (05)
  • [5] Robot Path Planning Based on Improved Genetic Algorithm
    Zhao, Yuan
    Gu, Jason
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 2515 - 2522
  • [6] Mobile Robot Path Planning Based on an Improved A* Algorithm
    Zhao X.
    Wang Z.
    Huang C.
    Zhao Y.
    Zhao, Yanwei (zyw@zjut.edu.cn), 2018, Chinese Academy of Sciences (40): : 903 - 910
  • [7] Robot Path Planning and Experiment with an Improved PSO Algorithm
    Kang Y.
    Jiang C.
    Qin Y.
    Ye C.
    Jiqiren/Robot, 2020, 42 (01): : 71 - 78
  • [8] Path Planning of Mobile Robot Based on Improved A* Algorithm
    Lin, Mingxiu
    Yuan, Kai
    Shi, Chenzhi
    Wang, Yutong
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 3570 - 3576
  • [9] Application of the improved genetic algorithm in robot path planning
    Wang Rui
    Wang Jinguo
    Wang Na
    PROCEEDINGS OF THE 2015 JOINT INTERNATIONAL MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY CONFERENCE (JIMET 2015), 2015, 10 : 1081 - 1084
  • [10] Robot Path Planning Based on Improved A* Algorithm
    Peng, Jiansheng
    Huang, Yiyong
    Luo, Guan
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2015, 15 (02) : 171 - 180