Atmospheric turbulence recognition with deep learning models for sinusoidal hyperbolic hollow Gaussian beams-based free-space optical communication links

被引:2
|
作者
Elmabruk, Kholoud [1 ]
Adem, Kemal [2 ]
Kilicarslan, Serhat [3 ]
机构
[1] Sivas Univ Sci & Technol, Elect Elect Engn Dept, Sivas, Turkiye
[2] Cumhuriyet Univ, Comp Engn Dept, Sivas, Turkiye
[3] Bandirma Onyedi Eylul Univ, Software Engn Dept, Balikesir, Turkiye
关键词
free-space optical communication; sinh hollow gaussian beams; atmospheric turbulence; deep learning; artificial intelligence techniques; intensity; PROPAGATION PROPERTIES; NEURAL-NETWORKS;
D O I
10.1088/1402-4896/ad538e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integration of artificial intelligence technology to improve the performance of free-space optical communication (FSO) systems has received increasing interest. This study aims to propose a novel approach based on deep learning techniques for detecting turbulence-induced distortion levels in FSO communication links. The deep learning-based models improved and fine-tuned in this work are trained using a dataset containing the intensity profiles of Sinusoidal hyperbolic hollow Gaussian beams (ShHGBs). The intensity profiles included in the dataset are the ones of ShHGBs propagating for 6 km under the influence of six different atmospheric turbulence strengths. This study presents deep learning-based Resnet-50, EfficientNet, MobileNetV2, DenseNet121 and Improved+MobileNetV2 approaches for turbulence-induced disturbance detection and experimental evaluation results. In order to compare the experimental results, an evaluation is made by considering the accuracy, precision, recall, and f1-score criteria. As a result of the experimental evaluation, the average values for accuracy, precision, recall and F-score with the best performance of the improved method are given; average accuracy 0.8919, average precision 0.8933, average recall 0.8955 and average F-score 0.8944. The obtained results have immense potential to address the challenges associated with the turbulence effects on the performance of FSO systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] MIMO Free-Space Optical Communication Employing Subcarrier Intensity Modulation in Atmospheric Turbulence Channels
    Ghassemlooy, Zabih
    Popoola, Wasiu O.
    Ahmadi, Vahid
    Leitgeb, Erich
    COMMUNICATIONS INFRASTRUCTURE: SYSTEMS AND APPLICATIONS IN EUROPE, 2009, 16 : 61 - +
  • [22] Atmospheric turbulence and free-space optical communication using orbital angular momentum of single photons
    Paterson, C
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS VII, 2004, 5572 : 187 - 198
  • [23] Experimental Demonstration of a Hybrid Link for Mitigating Atmospheric Turbulence Effects in Free-Space Optical Communication
    Luna, Ricardo
    Borah, Deva K.
    Jonnalagadda, Raja
    Voelz, David G.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (17) : 1196 - 1198
  • [24] Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence
    Wu, Hanling
    Yan, Haixing
    Li, Xinyang
    OPTIK, 2010, 121 (19): : 1789 - 1793
  • [25] Joint channel model for fog and atmospheric turbulence and performance analysis of unmanned aerial vehicles' free-space optical communication
    Yang, Ruike
    Han, Jinxiu
    Liang, Linlin
    Li, Renxian
    Zhou, Ye
    OPTICAL ENGINEERING, 2023, 62 (01)
  • [26] Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels
    Liu, Dachang
    Wang, Zixiong
    Liu, Jianguo
    Tan, Jun
    Yu, Lijuan
    Mei, Haiping
    Zhou, Yusong
    Zhu, Ninghua
    OPTICAL ENGINEERING, 2017, 56 (10)
  • [27] Standard Deviation of Fiber-Coupling Efficiency for Free-Space Optical Communication Through Atmospheric Turbulence
    Moon, Woohyeon
    Kim, Hoon
    IEEE PHOTONICS JOURNAL, 2023, 15 (03):
  • [28] Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels
    Yang, Liang
    Gao, Xiqi
    Alouini, Mohamed-Slim
    IEEE PHOTONICS JOURNAL, 2014, 6 (02):
  • [29] Scintillation of pseudo-partially coherent Gaussian beam in atmospheric turbulence: application for free-space optical communications
    Qian, Xianmei
    Zhu, Wenyue
    Rao, Ruizhong
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS XV, 2012, 8535
  • [30] High Capacity Turbulence-Resilient Free-Space Chaotic Optical Communication Based on Vector Optical Field Manipulation
    Song, Zheng
    Zhang, Yiqun
    Xu, Mingfeng
    Pu, Mingbo
    Zhou, Mengjie
    Yu, Yong
    Ding, Jiazheng
    Chen, Shuangcheng
    Jiang, Ning
    Qiu, Kun
    Luo, Xiangang
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (24) : 8647 - 8654