Isogeometric method for buckling prediction and post-buckling analysis of variable stiffness composite underwater pressure shell

被引:4
作者
Miao, Hao [1 ]
Jiao, Peng [1 ,2 ]
Xu, Huangyang [1 ]
Li, Xinshuang [1 ]
Chen, Zhiping [1 ]
机构
[1] Zhejiang Univ, Inst Proc Equipment, Coll Energy Engn, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Aeronaut & Astronaut, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
External pressure; Cylindrical shell; Post-buckling; Isogeometric analysis; Reissner -Mindlin shell; CYLINDRICAL-SHELLS; THIN SHELLS; CYLINDERS; FORMULATION; DESIGN; DAMAGE;
D O I
10.1016/j.tws.2024.112085
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Composite cylindrical pressure hulls are thin-walled structures widely used for autonomous underwater vehicles. Buckling failure is one of the most important failure modes for these shells under external pressure. In existing buckling studies of cylindrical pressure hulls, FEM is the most popular analysis method but not efficient enough when dealing with structures with complex material distributions such as the variable stiffness composite shells. Motivated by this, an isogeometric method for buckling prediction and post -buckling analysis of variable stiffness composite underwater pressure shell is proposed in this article. In this method, based on Reissner - Mindlin shell formulas undergoing large deformation, a buckling analysis framework in IGA forms is established. Then a modified arc-length method is proposed based on kinematics used in the shell formulas, and is used to overcome the inaccuracy caused by the 2 degrees of freedom node rotation in the prediction step of arc-length method. In addition, the influence of bifurcation is considered, which may seriously affect the precision of buckling behavior simulation when the limit point is close to a bifurcation point. The computational accuracy of this framework has been validated in a series of constant stiffness composite shell cases involving buckling load prediction and postbuckling behavior simulation. For variable stiffness composite hull cases, this framework achieves the same precision as FEM with fewer elements. Therefore, the proposed framework provides an efficient way for the buckling design of underwater variable stiffness composite pressure hulls.
引用
收藏
页数:22
相关论文
共 68 条
  • [61] Isogeometric analysis: An overview and computer implementation aspects
    Vinh Phu Nguyen
    Anitescu, Cosmin
    Bordas, Stephane P. A.
    Rabczuk, Timon
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 117 : 89 - 116
  • [62] Wagner W.andWriggers., 1988, ENG COMPUT-GERMANY, V5, P103, DOI DOI 10.1108/EB023727
  • [63] Lightweight design of variable-angle filament-wound cylinders combining Kriging-based metamodels with particle swarm optimization
    Wang, Zhihua
    Almeida, Jose Humberto S., Jr.
    Ashok, Aravind
    Wang, Zhonglai
    Castro, Saullo G. P.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (05)
  • [64] A Buckling Analysis and Optimization Method for a Variable Stiffness Cylindrical Pressure Shell of AUV
    Yang, Zhaoqi
    Cao, Yonghui
    Liu, Jing
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (06)
  • [65] Yongsheng L.I., 2023, Acta Materiae Compositae Sinica, V40, P2639
  • [66] Nonlinear elastic buckling and postbuckling analysis of cylindrical panels
    Zhou, Yang
    Stanciulescu, Ilinca
    Eason, Thomas
    Spottswood, Michael
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2015, 96 : 41 - 50
  • [67] Bezier extraction based isogeometric approach to multi-objective topology optimization of periodic microstructures
    Zhuang, Chungang
    Xiong, Zhenhua
    Ding, Han
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (23) : 6827 - 6866
  • [68] An isogeometric Reissner-Mindlin shell element based on Bezier dual basis functions: Overcoming locking and improved coarse mesh accuracy
    Zou, Z.
    Scott, M. A.
    Miao, D.
    Bischoff, M.
    Oesterle, B.
    Dornisch, W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 370