Learning Linear Models Using Distributed Iterative Hessian Sketching

被引:0
作者
Wang, Han [1 ]
Anderson, James [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
来源
LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168 | 2022年 / 168卷
关键词
Distributed optimization; System identification; Sketching; Randomized algorithms; OPTIMIZATION; PARALLEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work considers the problem of learning the Markov parameters of a linear system from observed data. Recent non-asymptotic system identification results have characterized the sample complexity of this problem in the single and multi-rollout setting. In both instances, the number of samples required in order to obtain acceptable estimates can produce optimization problems with an intractably large number of decision variables for a second-order algorithm. We show that a randomized and distributed Newton algorithm based on Hessian-sketching can produce epsilon-optimal solutions and converges geometrically. Moreover, the algorithm is trivially parallelizable. Our results hold for a variety of sketching matrices and we illustrate the theory with numerical examples.
引用
收藏
页数:14
相关论文
共 56 条
  • [1] THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM AND APPROXIMATE NEAREST NEIGHBORS
    Ailon, Nir
    Chazelle, Bernard
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 39 (01) : 302 - 322
  • [2] BLENDENPIK: SUPERCHARGING LAPACK'S LEAST-SQUARES SOLVER
    Avron, Haim
    Maymounkov, Petar
    Toledo, Sivan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03) : 1217 - 1236
  • [3] Bartan B, 2020, Arxiv, DOI arXiv:2002.06540
  • [4] Boyan JA, 1999, MACHINE LEARNING, PROCEEDINGS, P49
  • [5] Boyd S., 2004, Convex Optimization, DOI 10.1017/CBO9780511804441
  • [6] Brunton SL, 2019, DATA-DRIVEN SCIENCE AND ENGINEERING: MACHINE LEARNING, DYNAMICAL SYSTEMS, AND CONTROL, pIX, DOI 10.1017/9781108380690
  • [7] Computational and statistical tradeoffs via convex relaxation
    Chandrasekaran, Venkat
    Jordan, Michael I.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (13) : E1181 - E1190
  • [8] Crane R, 2019, Arxiv, DOI arXiv:1901.05134
  • [9] On the Sample Complexity of the Linear Quadratic Regulator
    Dean, Sarah
    Mania, Horia
    Matni, Nikolai
    Recht, Benjamin
    Tu, Stephen
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (04) : 633 - 679
  • [10] QUASI-NEWTON METHODS, MOTIVATION AND THEORY
    DENNIS, JE
    MORE, JJ
    [J]. SIAM REVIEW, 1977, 19 (01) : 46 - 89