Employing polyaniline conductive binders for graphite lithium-ion anodes via a dry process

被引:6
作者
Yuan, Li [1 ]
Liu, Huimin [2 ,3 ]
Jiang, Xunyong [1 ,4 ,5 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin, Peoples R China
[2] Tianjin Key Lab Film Elect & Commun Devices, Tianjin, Peoples R China
[3] Tianjin Univ Technol, Sch Integrated Circuit Sci & Engn, Tianjin, Peoples R China
[4] Minist Educ, Key Lab Display Mat & Photoelect Devices, Tianjin, Peoples R China
[5] Tianjin Key Lab Photoelect Mat & Devices, Tianjin, Peoples R China
关键词
Polyaniline; Conductive polymer; Dry process; Graphite anode; Lithium -ion battery; EMERALDINE FORM; POLYMER; CATHODE; PERFORMANCE; DEGRADATION; TRANSITION; ELECTRODES; LIFEPO4;
D O I
10.1016/j.est.2024.111912
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Improving manufacturing energy efficiency and electrode energy density can reduce the costs of producing lithium -ion batteries. This paper explores using conductive polymer polyaniline (PANI) instead of insulating binders like PVDF in dry electrode preparation methods. Experiments demonstrate that PANI can simultaneously serve as an effective binder and conductive agent for graphite anodes, produced through an optimized dry process. The high conductivity and electrochemical properties of dry PANI electrodes provide a promising route to lowering inactive components and LIB manufacturing costs. Specifically, the dry PANI graphite anodes demonstrate higher discharge capacity compared to PVDF-based electrodes, especially at high discharge rates relevant to applications. The dry PANI graphite negative electrode, obtained by hot pressing at 170 degrees C, exhibits the best comprehensive electrochemical performance compared to those from other dry PANI processes. This paper provides new ideas for the selection of binders in dry-process electrode fabrication.
引用
收藏
页数:10
相关论文
共 64 条
[11]  
Guo YG, 2008, ADV MATER, V20, P2878, DOI 10.1002/adma.200800627
[12]   Cyclohexanehexone-assisted one-step ball-milling of graphite to graphene composites as cathodes for lithium-ion batteries [J].
Han, Xiaoyan ;
Xiang, Gaoqiang ;
Dou, Yu ;
Zhang, Qunchao ;
Shi, Dean ;
Yang, Yingkui .
ELECTROCHIMICA ACTA, 2022, 436
[13]   Acid doping of polyaniline: Spectroscopic and electrochemical studies [J].
Hatchett, DW ;
Josowicz, M ;
Janata, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (50) :10992-10998
[14]   Comparison of chemically and electrochemically synthesized polyaniline films [J].
Hatchett, DW ;
Josowicz, M ;
Janata, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) :4535-4538
[15]   Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach [J].
Hippauf, Felix ;
Schumm, Benjamin ;
Doerfler, Susanne ;
Althues, Holger ;
Fujiki, Satoshi ;
Shiratsuchi, Tomoyuki ;
Tsujimura, Tomoyuki ;
Aihara, Yuichi ;
Kaskel, Stefan .
ENERGY STORAGE MATERIALS, 2019, 21 :390-398
[16]   High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers [J].
Huang, Yun-Hui ;
Goodenough, John B. .
CHEMISTRY OF MATERIALS, 2008, 20 (23) :7237-7241
[17]   Conveying Advanced Li-ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills [J].
Kraytsberg, Alexander ;
Ein-Eli, Yair .
ADVANCED ENERGY MATERIALS, 2016, 6 (21)
[18]   Thick Electrode Batteries: Principles, Opportunities, and Challenges [J].
Kuang, Yudi ;
Chen, Chaoji ;
Kirsch, Dylan ;
Hu, Liangbing .
ADVANCED ENERGY MATERIALS, 2019, 9 (33)
[19]   The emerging era of supramolecular polymeric binders in silicon anodes [J].
Kwon, Tae-woo ;
Choi, Jang Wook ;
Coskun, Ali .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) :2145-2164
[20]   In Situ Deprotection of Polymeric Binders for Solution-Processible Sulfide-Based All-Solid-State Batteries [J].
Lee, Jieun ;
Lee, Kyulin ;
Lee, Taegeun ;
Kim, Hyuntae ;
Kim, Kyungsu ;
Cho, Woosuk ;
Coskun, Ali ;
Char, Kookheon ;
Choi, Jang Wook .
ADVANCED MATERIALS, 2020, 32 (37)