Employing polyaniline conductive binders for graphite lithium-ion anodes via a dry process

被引:6
作者
Yuan, Li [1 ]
Liu, Huimin [2 ,3 ]
Jiang, Xunyong [1 ,4 ,5 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin, Peoples R China
[2] Tianjin Key Lab Film Elect & Commun Devices, Tianjin, Peoples R China
[3] Tianjin Univ Technol, Sch Integrated Circuit Sci & Engn, Tianjin, Peoples R China
[4] Minist Educ, Key Lab Display Mat & Photoelect Devices, Tianjin, Peoples R China
[5] Tianjin Key Lab Photoelect Mat & Devices, Tianjin, Peoples R China
关键词
Polyaniline; Conductive polymer; Dry process; Graphite anode; Lithium -ion battery; EMERALDINE FORM; POLYMER; CATHODE; PERFORMANCE; DEGRADATION; TRANSITION; ELECTRODES; LIFEPO4;
D O I
10.1016/j.est.2024.111912
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Improving manufacturing energy efficiency and electrode energy density can reduce the costs of producing lithium -ion batteries. This paper explores using conductive polymer polyaniline (PANI) instead of insulating binders like PVDF in dry electrode preparation methods. Experiments demonstrate that PANI can simultaneously serve as an effective binder and conductive agent for graphite anodes, produced through an optimized dry process. The high conductivity and electrochemical properties of dry PANI electrodes provide a promising route to lowering inactive components and LIB manufacturing costs. Specifically, the dry PANI graphite anodes demonstrate higher discharge capacity compared to PVDF-based electrodes, especially at high discharge rates relevant to applications. The dry PANI graphite negative electrode, obtained by hot pressing at 170 degrees C, exhibits the best comprehensive electrochemical performance compared to those from other dry PANI processes. This paper provides new ideas for the selection of binders in dry-process electrode fabrication.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries [J].
Ahmad, A. L. ;
Farooqui, U. R. ;
Hamid, N. A. .
RSC ADVANCES, 2018, 8 (45) :25725-25733
[2]   High Energy Li-Ion Electrodes Prepared via a Solventless Melt Process [J].
Astafyeva, Ksenia ;
Dousset, Capucine ;
Bureau, Yannick ;
Stalmach, Sara-Lyne ;
Dufour, Dr Bruno .
BATTERIES & SUPERCAPS, 2020, 3 (04) :341-343
[3]   Progress in preparation, processing and applications of polyaniline [J].
Bhadra, Sambhu ;
Khastgir, Dipak ;
Singha, Nikhil K. ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (08) :783-810
[4]   POLYANILINE - PROTONIC ACID DOPING OF THE EMERALDINE FORM TO THE METALLIC REGIME [J].
CHIANG, JC ;
MACDIARMID, AG .
SYNTHETIC METALS, 1986, 13 (1-3) :193-205
[5]   Advanced energy storage device: a hybrid BatCap system consisting of battery-supercapacitor hybrid electrodes based on Li4Ti5O12-activated-carbon hybrid nanotubes [J].
Choi, Hong Soo ;
Im, Ji Hyuk ;
Kim, TaeHoon ;
Park, Jae Hyun ;
Park, Chong Rae .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (33) :16986-16993
[6]   Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components [J].
Costa, C. M. ;
Lizundia, E. ;
Lanceros-Mendez, S. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2020, 79
[7]   Boosting the Electrical Double-Layer Capacitance of Graphene by Self-Doped Defects through Ball-Milling [J].
Dong, Yue ;
Zhang, Su ;
Du, Xian ;
Hong, Song ;
Zhao, Shengna ;
Chen, Yaxin ;
Chen, Xiaohong ;
Song, Huaihe .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (24)
[8]  
Duong H., 2016, MA2016-01, P475, DOI DOI 10.1149/MA2016-01/5/475
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107