Biomass-derived carbon applications in the field of supercapacitors: Progress and prospects

被引:33
|
作者
Lu, Wenjie [1 ]
Si, Youxin [1 ]
Zhao, Chongrui [1 ]
Chen, Tianqi [1 ]
Li, Chao [2 ]
Zhang, Cheng [3 ]
Wang, Kuaibing [1 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Dept Chem, Nanjing 210095, Peoples R China
[2] Sichuan Univ Sci & Engn, Sch Phys & Elect Engn, Yibin 644000, Peoples R China
[3] Suzhou Univ Sci & Technol, Sch Phys Sci & Technol, Jiangsu Key Lab Micro & Nano Heat Fluid Flow Techn, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass -derived carbon; Supercapacitors; Activation; Pore structure; HIGH-RATE PERFORMANCE; POROUS CARBON; DOPED CARBON; ELECTRODE MATERIALS; WASTE BIOMASS; ELECTROCHEMICAL PROCESSES; HYBRID SUPERCAPACITORS; MICROWAVE ACTIVATION; CHEMICAL ACTIVATION; NITROGEN;
D O I
10.1016/j.cej.2024.153311
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In response to the escalating threats posed by climate change and the depletion of fossil fuel reserves, the pursuit of renewable energy sources and efficient energy storage technologies has become imperative. This review article focuses on the innovative application of biomass -derived carbon within the realm of supercapacitors, shedding light on the challenges, progress, and prospects in this burgeoning field. Biomass, being both sustainable and abundant, presents a promising pathway for the generation of carbon -based materials due to its inherent renewability and carbon neutrality. The utilization of biomass -derived carbon as electrode materials in supercapacitors underscores a critical advancement towards high-performance, eco-friendly, and cost-effective energy storage solutions. We delve into the diverse microstructures of carbon derived from various biomass sources, the methodologies of carbonization and activation, and the consequential effects of doping with different elements to enhance performance. Furthermore, this review meticulously examines the pivotal roles played by pore structure composition and distribution in influencing the energy storage and discharge capacities of supercapacitors. By analyzing recent advancements and synthesizing insights from current research, this article not only encapsulates the significant strides made in the applications of biomass -derived carbon but also identifies the pressing challenges that demand attention. In doing so, it offers a comprehensive overview that not only guides future research directions but also significantly contributes to the advancement of sustainable energy storage technologies, essential for tackling the global energy crisis and reducing environmental impacts.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Research progress of biomass-derived carbon for the supercapacitors
    Zhang, Miao
    Peng, Lihua
    MATERIALS RESEARCH EXPRESS, 2024, 11 (01)
  • [2] Recent progress of biomass-derived carbon materials for supercapacitors
    Wang, Jiashuai
    Zhang, Xiao
    Li, Zhe
    Ma, Yanqing
    Ma, Lei
    JOURNAL OF POWER SOURCES, 2020, 451
  • [3] Biomass-derived carbon for supercapacitors electrodes - A review of recent advances
    Zhang, Yong
    Pan, Haoxin
    Zhou, Qingyun
    Liu, Kaige
    Ma, Wenhui
    Fan, Shan
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 153
  • [4] Activation of biomass-derived porous carbon for supercapacitors: A review
    Guo, Zixuan
    Han, Xiaoshuai
    Zhang, Chunmei
    He, Shuijian
    Liu, Kunming
    Hu, Jiapeng
    Yang, Weisen
    Jian, Shaoju
    Jiang, Shaohua
    Duan, Gaigai
    CHINESE CHEMICAL LETTERS, 2024, 35 (07)
  • [5] Recent advances and challenges in biomass-derived carbon materials for supercapacitors: A review
    Yuan, Chuan
    Xu, Hao
    El-khodary, Sherif A.
    Ni, Guosong
    Esakkimuthu, Sivakumar
    Zhong, Shan
    Wang, Shuang
    FUEL, 2024, 362
  • [6] Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors
    Sun, Li
    Gong, Youning
    Li, Delong
    Pan, Chunxu
    GREEN CHEMISTRY, 2022, 24 (10) : 3864 - 3894
  • [7] A Review on Biomass-Derived Activated Carbon for Next-Generation Supercapacitors: Cutting-Edge Advances and Future Prospects
    Duraisamy, Navaneethan
    Krishna, S. K.
    Dhandapani, Elumalai
    Kandiah, Kavitha
    ENERGY & FUELS, 2025, 39 (05) : 2306 - 2347
  • [8] Design and Preparation of Biomass-Derived Carbon Materials for Supercapacitors: A Review
    Liu, Yang
    Chen, Jiareng
    Cui, Bin
    Yin, Pengfei
    Zhang, Chao
    C-JOURNAL OF CARBON RESEARCH, 2018, 4 (04):
  • [9] ZnCl2-KOH modulation of biomass-derived porous carbon for supercapacitors
    Lu, Changxing
    Yu, Zhaosheng
    Zhang, Xikui
    Ma, Xiaoqian
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 2212 - 2222
  • [10] Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption
    Xiao, Pei-Wen
    Meng, Qinghai
    Zhao, Li
    Li, Jing-Jing
    Wei, Zhixiang
    Han, Bao-Hang
    MATERIALS & DESIGN, 2017, 129 : 164 - 172