A Multi-strategy Slime Mould Algorithm for Solving Global Optimization and Engineering Optimization Problems

被引:2
|
作者
Wang, Wen-chuan [1 ]
Tao, Wen-hui [1 ]
Tian, Wei-can [1 ]
Zang, Hong-fei [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Water Resources, Zhengzhou 450046, Peoples R China
关键词
Slime mould algorithm; Opposition-based learning; Joint opposite selection; Equilibrium optimizer; Engineering optimization problems; SEARCH ALGORITHM; WMA;
D O I
10.1007/s12065-024-00962-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming at the problems of slow convergence, low accuracy, and easy to fall into local optimum of the slime mould algorithm (SMA), we propose an improved SMA (OJESMA). OJESMA improves the performance of the algorithm by combining strategies based on opposition-based learning, joint opposite selection, and equilibrium optimizer. First, we introduce an adversarial learning-opposition-based learning, in generating the initial population of slime molds. Second, we incorporate a joint inverse selection strategy, including selective leading opposition and dynamic opposite. Finally, we introduce the balanced candidate principle of the equilibrium optimizer algorithm into SMA, which enhances the algorithm's optimal search capability and anti-stagnation ability. We conducted optimization search experiments on 29 test functions from CEC2017 and 10 benchmark test functions from CEC2020, as well as nonparametric statistical analysis (Friedman and Wilcoxon). The experimental results and non-parametric test results show that OJESMA has better optimization accuracy, convergence performance, and stability. To further validate the effectiveness of the algorithm, we also performed optimization tests on six engineering problems and the variable index Muskingum. In summary, OJESMA demonstrates its practical value and advantages in solving various complex optimization problems with its excellent performance, providing new perspectives and methods for the development of optimization algorithms.
引用
收藏
页码:3865 / 3889
页数:25
相关论文
共 50 条
  • [41] A multi-strategy improved beluga whale optimization algorithm for constrained engineering problems
    Chen, Xinyi
    Zhang, Mengjian
    Yang, Ming
    Wang, Deguang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 14685 - 14727
  • [42] Improved sparrow search algorithm with adaptive multi-strategy hierarchical mechanism for global optimization and engineering problems
    Wei, Fengtao
    Feng, Yue
    Shi, Xin
    Hou, Kai
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (03):
  • [43] A Multi-Strategy Dung Beetle Optimization Algorithm for Optimizing Constrained Engineering Problems
    Wang, Zilong
    Shao, Peng
    IEEE ACCESS, 2023, 11 : 98805 - 98817
  • [44] Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems
    Thakur, Gauri
    Pal, Ashok
    Mittal, Nitin
    Rajiv, Asha
    Salgotra, Rohit
    MATHEMATICS, 2024, 12 (10)
  • [45] A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems
    Liu, Haijun
    Xiao, Jian
    Yao, Yuan
    Zhu, Shiyi
    Chen, Yi
    Zhou, Rui
    Ma, Yan
    Wang, Maofa
    Zhang, Kunpeng
    BIOMIMETICS, 2024, 9 (09)
  • [46] Multi-strategy firefly algorithm with selective ensemble for complex engineering optimization problems
    Peng, Hu
    Xiao, Wenhui
    Han, Yupeng
    Jiang, Aiwen
    Xu, Zhenzhen
    Li, Mengmeng
    Wu, Zhijian
    APPLIED SOFT COMPUTING, 2022, 120
  • [47] An improved multi-strategy beluga whale optimization for global optimization problems
    Chen, Hongmin
    Wang, Zhuo
    Wu, Di
    Jia, Heming
    Wen, Changsheng
    Rao, Honghua
    Abualigah, Laith
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 13267 - 13317
  • [48] Improved Multi-Strategy Sand Cat Swarm Optimization for Solving Global Optimization
    Zhang, Kuan
    He, Yirui
    Wang, Yuhang
    Sun, Changjian
    BIOMIMETICS, 2024, 9 (05)
  • [49] A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem
    Song, Yingjie
    Liu, Ying
    Chen, Huayue
    Deng, Wu
    ELECTRONICS, 2023, 12 (03)
  • [50] Multi-Strategy Genetic Algorithm for Self-configuring Solving of Complex Optimization Problems
    Sopov, Evgenii
    2015 IIAI 4TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), 2015, : 556 - 561