Numerical solution of a hydrodynamic model with cavitation using finite difference method at arbitrary meshes

被引:0
作者
Garcia, A. [1 ]
Negreanu, M. [2 ]
Urena, F. [1 ]
Vargas, A. M. [3 ]
机构
[1] ETSII, UNED, Madrid, Spain
[2] UCM, Inst Matemat Interdisciplinar, Dept Anal Matematico & Matemat Aplicada, Madrid, Spain
[3] UNED, Dept Matemat Fundamentales, Madrid, Spain
关键词
Tribology; Generalized finite difference method; Elrod-Adams; Journal bearing; Cavitation; REYNOLDS-EQUATION; JOURNAL-BEARING; ALGORITHM; COMPUTATION; FORMULATION; FILM;
D O I
10.1016/j.apnum.2024.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the implementation of the finite difference method on arbitrary meshes in conjunction with a fixed-point algorithm for the lubrication problem of a journal bearing with cavitation, considering the Elrod-Adams model. We establish numerical properties of the generalized finite difference scheme and provide several illustrative examples.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 58 条
[1]   The finite volume solution of the Reynolds equation of lubrication with film discontinuities [J].
Arghir, M ;
Alsayed, A ;
Nicolas, D .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2002, 44 (10) :2119-2132
[2]   The impact of the cavitation model in the analysis of microtextured lubricated journal bearings [J].
Ausas, Roberto ;
Ragot, Patrick ;
Leiva, Jorge ;
Jai, Mohammed ;
Bayada, Guy ;
Buscaglia, Gustavo C. .
JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2007, 129 (04) :868-875
[3]   A Mass-Conserving Algorithm for Dynamical Lubrication Problems With Cavitation [J].
Ausas, Roberto F. ;
Jai, Mohammed ;
Buscaglia, Gustavo C. .
JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2009, 131 (03) :1-7
[4]   Characteristics method for the formulation and computation of a free boundary cavitation problem [J].
Bayada, G ;
Chambat, M ;
Vazquez, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 98 (02) :191-212
[5]  
Bayada G., 2007, Bol. Soc. Esp. Mat. Apl., V39, P31
[6]   Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method [J].
Benito, J. J. ;
Garcia, A. ;
Gavete, L. ;
Negreanu, M. ;
Urena, F. ;
Vargas, A. M. .
APPLIED NUMERICAL MATHEMATICS, 2020, 157 :356-371
[7]   Influence of several factors in the generalized finite difference method [J].
Benito, JJ ;
Ureña, F ;
Gavete, L .
APPLIED MATHEMATICAL MODELLING, 2001, 25 (12) :1039-1053
[8]   NUMERICAL-SOLUTION OF CAVITATION PROBLEMS IN LUBRICATION [J].
BERMUDEZ, A ;
DURANY, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 75 (1-3) :457-466
[9]   EHD ANALYSIS, INCLUDING STRUCTURAL INERTIA EFFECTS AND A MASS-CONSERVING CAVITATION MODEL [J].
BONNEAU, D ;
GUINES, D ;
FRENE, J ;
TOPLOSKY, J .
JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 1995, 117 (03) :540-547
[10]   Issues related to the numerical simulation of herringbone grooved journal bearing including cavitation condition [J].
Borse, N., V ;
Sawant, M. A. ;
Chippa, S. P. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2022, 236 (07) :1420-1433