Accuracy of a deep learning-based algorithm for the detection of thoracic aortic calcifications in chest computed tomography and cardiovascular surgery planning

被引:1
作者
Saffar, Ruben [1 ]
Sperl, Jonathan, I [2 ]
Berger, Tim [3 ]
Vojtekova, Jana [4 ]
Kreibich, Maximilian [3 ]
Hagar, Muhammad Taha [1 ]
Weiss, Jakob B. [1 ]
Soschynski, Martin [1 ]
Bamberg, Fabian [1 ]
Czerny, Martin [3 ]
Schuppert, Christopher [1 ]
Schlett, Christopher L. [1 ,5 ]
机构
[1] Univ Freiburg, Med Ctr, Fac Med, Dept Diagnost & Intervent Radiol, Freiburg, Germany
[2] Siemens Healthineers, Erlangen, Germany
[3] Univ Freiburg, Univ Heart Ctr Freiburg Bad Krozingen, Fac Med, Dept Cardiovasc Surg, Freiburg, Germany
[4] Siemens Healthineers, Bratislava, Slovakia
[5] Univ Freiburg, Med Ctr, Dept Diagnost & Intervent Radiol, Hugstetter Str 55, D-79106 Freiburg, Germany
关键词
Thoracic aortic calcifications; Thoracic aorta; Cardiothoracic imaging; Chest CT; Cerebral protection; Artificial intelligence;
D O I
10.1093/ejcts/ezae219
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVES: To assess the accuracy of a deep learning-based algorithm for fully automated detection of thoracic aortic calcifications in chest computed tomography (CT) with a focus on the aortic clamping zone. METHODS: We retrospectively included 100 chest CT scans from 91 patients who were examined on second- or third-generation dual-source scanners. Subsamples comprised 47 scans with an electrocardiogram-gated aortic angiography and 53 unenhanced scans. A deep learning model performed aortic landmark detection and aorta segmentation to derive 8 vessel segments. Associated calcifications were detected and their volumes measured using a mean-based density thresholding. Algorithm parameters (calcium cluster size threshold, aortic mask dilatation) were varied to determine optimal performance for the upper ascending aorta that encompasses the aortic clamping zone. A binary visual rating served as a reference. Standard estimates of diagnostic accuracy and inter-rater agreement using Cohen's Kappa were calculated. RESULTS: Thoracic aortic calcifications were observed in 74% of patients with a prevalence of 27-70% by aorta segment. Using different parameter combinations, the algorithm provided binary ratings for all scans and segments. The best performing parameter combination for the presence of calcifications in the aortic clamping zone yielded a sensitivity of 93% and a specificity of 82%, with an area under the receiver operating characteristic curve of 0.874. Using these parameters, the inter-rater agreement ranged from kappa 0.66 to 0.92 per segment. CONCLUSIONS: Fully automated segmental detection of thoracic aortic calcifications in chest CT performs with high accuracy. This includes the critical preoperative assessment of the aortic clamping zone.
引用
收藏
页数:11
相关论文
共 23 条
[1]   Image-based ring size prediction for mitral valve repair [J].
Akansel, Serdar ;
Kofler, Markus ;
Van Praet, Karel M. ;
Sundermann, Simon H. ;
Kukucka, Marian ;
Jacobs, Stephan ;
Falk, Volkmar ;
Kempfert, Joerg .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2023, 64 (01)
[2]   Risk factors for stroke after total aortic arch replacement using the frozen elephant trunk technique [J].
Berger, Tim ;
Kreibich, Maximilian ;
Mueller, Felix ;
Breurer-Kellner, Lara ;
Rylski, Bartosz ;
Kondov, Stoyan ;
Schroefel, Holger ;
Pingpoh, Clarence ;
Beyersdorf, Friedhelm ;
Siepe, Matthias ;
Czerny, Martin .
INTERACTIVE CARDIOVASCULAR AND THORACIC SURGERY, 2022, 34 (05) :865-871
[3]   Machine learning-based risk profile classification of patients undergoing elective heart valve surgery [J].
Bodenhofer, Ulrich ;
Haslinger-Eisterer, Bettina ;
Minichmayer, Alexander ;
Hermanutz, Georg ;
Meier, Jens .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2021, 60 (06) :1378-1385
[4]   Development of a deep learning-based algorithm for the automatic detection and quantification of aortic valve calcium [J].
Chang, Suyon ;
Kim, Hwiyoung ;
Suh, Young Joo ;
Choi, Dong Min ;
Kim, Hyunghu ;
Kim, Dong Kyu ;
Kim, Jin Young ;
Yoo, Jin Young ;
Choi, Byoung Wook .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 137
[5]   EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ [J].
Czerny, Martin ;
Grabenwoeger, Martin ;
Berger, Tim ;
Aboyans, Victor ;
Della Corte, Alessandro ;
Chen, Edward P. ;
Desai, Nimesh D. ;
Dumfarth, Julia ;
Elefteriades, John A. ;
Etz, Christian D. ;
Kim, Karen M. ;
Kreibich, Maximilian ;
Lescan, Mario ;
Di Marco, Luca ;
Martens, Andreas ;
Mestres, Carlos A. ;
Milojevic, Milan ;
Nienaber, Christoph A. ;
Piffaretti, Gabriele ;
Preventza, Ourania ;
Quintana, Eduard ;
Rylski, Bartosz ;
Schlett, Christopher L. ;
Schoenhoff, Florian ;
Trimarchi, Santi ;
Tsagakis, Konstantinos .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2024, 65 (02)
[6]   Thoracic Aortic Calcification [J].
Desai, Milind Y. ;
Cremer, Paul C. ;
Schoenhagen, Paul .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (07) :1012-1026
[7]   Automatic quantification of calcifications in the coronary arteries and thoracic aorta on radiotherapy planning CT scans of Western and Asian breast cancer patients [J].
Gernaat, Sofie A. M. ;
van Velzen, Sanne G. M. ;
Koh, Vicky ;
Emaus, Marleen J. ;
Isgum, Ivana ;
Lessmann, Nikolas ;
Moes, Shinta ;
Jacobson, Anouk ;
Tan, Poey W. ;
Grobbee, Diederick E. ;
van den Bongard, Desiree H. J. ;
Tang, Johann I. ;
Verkooijen, Helena M. .
RADIOTHERAPY AND ONCOLOGY, 2018, 127 (03) :487-492
[8]   Automated segmentation and quantification of aortic calcification at abdominal CT: application of a deep learning-based algorithm to a longitudinal screening cohort [J].
Graffy, Peter M. ;
Liu, Jiamin ;
O'Connor, Stacy ;
Summers, Ronald M. ;
Pickhardt, Perry J. .
ABDOMINAL RADIOLOGY, 2019, 44 (08) :2921-2928
[9]  
Hiratzka LF, 2010, CIRCULATION, V121, pE266, DOI 10.1161/CIR.0b013e3181d4739e
[10]   Using machine learning to predict bleeding after cardiac surgery [J].
Hui, Victor ;
Litton, Edward ;
Edibam, Cyrus ;
Geldenhuys, Agneta ;
Hahn, Rebecca ;
Larbalestier, Robert ;
Wright, Brian ;
Pavey, Warren .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2023, 64 (06)