RelTrans: An Enhancing Offline Reinforcement Learning Model for the Complex Hand Gesture Decision-Making Task

被引:1
|
作者
Chen, Xiangwei [1 ]
Zeng, Zhixia [1 ]
Xiao, Ruliang [1 ]
Rida, Imad [2 ]
Zhang, Shi [1 ]
机构
[1] Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
[2] Univ Technol Compiegne, Ctr Rech Royallieu, Lab Biomecan & Bioingn, UMR 7338, F-60200 Compiegne, France
基金
中国国家自然科学基金;
关键词
Reinforcement learning; Data models; Decision making; Transformers; Task analysis; Gesture recognition; Adaptation models; Deep learning; data analysis; offline reinforcement learning; hand gesture recognition; decision-making;
D O I
10.1109/TCE.2024.3360211
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As wearable devices gain popularity, gesture recognition technology is becoming increasingly vital. Merely identifying gesture categories is insufficient for devices operating in complex environments. A significant challenge lies in enabling devices to autonomously and efficiently perform gesture recognition tasks, particularly in complex decision-making. Addressing this, this paper introduces an implicit relationship constraint-based offline reinforcement learning model, termed the Relationship Transformer Guided Generative Policy Network (RelTrans), designed for complex gesture decision-making tasks. The model includes an Implicit Constraint-Constructing Network (ICCN) that uses immediate rewards, unbound by predefined reward values, to extract relationship data for guiding the Generative Policy Network (GPN) in predicting action sequences. Additionally, it integrates a knowledge distillation-based Soft-Bias loss function, which not only allows the GPN to leverage ICCN's implicit constraints but also controls its self-generalization, ensuring effective information exchange and coordinated network updates. These advancements enable the model to comprehend and adapt to higher-level decision-making and reasoning across varying environmental conditions, enhancing the agent and applicability of gesture recognition technology in a broad spectrum of application areas. Extensive experimentation across 19 subtasks in the D4RL offline benchmark suite demonstrates that RelTrans matches or surpasses the performance of previous state-of-the-art approaches in various autonomous decision-making tasks.
引用
收藏
页码:3762 / 3769
页数:8
相关论文
共 50 条
  • [1] A Decision-Making Approach for Complex Unsignalized Intersection by Deep Reinforcement Learning
    Li, Shanke
    Peng, Kun
    Hui, Fei
    Li, Ziqi
    Wei, Cheng
    Wang, Wenbo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 16134 - 16147
  • [2] Decision-Making for Autonomous Vehicles in Random Task Scenarios at Unsignalized Intersection Using Deep Reinforcement Learning
    Xiao, Wenxuan
    Yang, Yuyou
    Mu, Xinyu
    Xie, Yi
    Tang, Xiaolin
    Cao, Dongpu
    Liu, Teng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 7812 - 7825
  • [3] A Multiple-Attribute Decision-Making Approach to Reinforcement Learning
    Shi, Haobin
    Xu, Meng
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2020, 12 (04) : 695 - 708
  • [4] Augmenting Reinforcement Learning With Transformer-Based Scene Representation Learning for Decision-Making of Autonomous Driving
    Liu, Haochen
    Huang, Zhiyu
    Mo, Xiaoyu
    Lv, Chen
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (03): : 4405 - 4421
  • [5] A Comparative Study of Situation Awareness-Based Decision-Making Model Reinforcement Learning Adaptive Automation in Evolving Conditions
    Costa, Renato D.
    Hirata, Celso M.
    Pugliese, Victor U.
    IEEE ACCESS, 2023, 11 : 16166 - 16182
  • [6] Offline Reinforcement Learning with Constrained Hybrid Action Implicit Representation Towards Wargaming Decision-Making
    Dong, Liwei
    Li, Ni
    Gong, Guanghong
    Lin, Xin
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (05): : 1422 - 1440
  • [7] A reinforcement learning model of precommitment in decision making
    Kurth-Nelson, Zeb
    Redish, A. David
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2010, 4
  • [8] D2 dopamine receptor expression, reactivity to rewards, and reinforcement learning in a complex value-based decision-making task
    Banuelos, Cristina
    Creswell, Kasey
    Walsh, Catherine
    Manuck, Stephen B.
    Gianaros, Peter J.
    Verstynen, Timothy
    SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2024, 19 (01)
  • [9] Intrusion Response Decision-making Method Based on Reinforcement Learning
    Yang, Jun-nan
    Zhang, Hong-qi
    Zhang, Chuan-fu
    2018 INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORK AND ARTIFICIAL INTELLIGENCE (CNAI 2018), 2018, : 154 - 162
  • [10] Model Comparisons: Evaluating Effects of Depression on Decision-Making vs. Reinforcement Learning in the Probabilistic Reward Task
    Dillon, Daniel
    Cusin, Cristina
    Fava, Maurizio
    Pizzagalli, Diego A.
    BIOLOGICAL PSYCHIATRY, 2024, 95 (10) : S79 - S80