Dual regularized spatial-temporal features adaptation for multi-source selected cross-subject motor imagery EEG classification
被引:4
作者:
Luo, Tian-jian
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
Fujian Normal Univ, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Peoples R China
Fujian Normal Univ, Digital Fujian Internet of thing Lab Environm Moni, Fuzhou 350117, Peoples R ChinaFujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
Luo, Tian-jian
[1
,2
,3
]
机构:
[1] Fujian Normal Univ, Coll Comp & Cyber Secur, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Peoples R China
[3] Fujian Normal Univ, Digital Fujian Internet of thing Lab Environm Moni, Fuzhou 350117, Peoples R China
Motor imagery EEG;
Common spatial -temporal pattern;
Dual regularizations;
Domain adaptation;
Brain -computer interface;
BRAIN-COMPUTER INTERFACES;
DOMAIN ADAPTATION;
NETWORK;
D O I:
10.1016/j.eswa.2024.124673
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Feature adaptation plays crucial roles in the calibration process of motor imagery brain computer interfaces (MIBCIs). Due to the temporal varying and spatial coupling characteristics in MI-electroencephalograph (EEG), recently proposed cross-subject MI-EEG classification methods have suffered from patterns collapse and erroneous labels accumulation, evenly lower efficiency. To address these fundamental limitations, this paper proposes a novel method to represent Spatial-Temporal Features Adaptation based on Dual Regularizations (DRSTFA), and perform a simplest multi-source domain samples selection during adaptation. Specifically, the covariance centroid alignment is applied as the preprocessing, and then common spatial-temporal pattern (CSTP) is represented for aligned MI-EEG samples. Finally, the dual regularizations of cross-domain graph preservation and target domain discriminability strengthen have been incorporated into joint distribution adaptation framework for CSTP feature adaptation. The proposed method has been systematically benchmarked on three BCI competition MI-EEG datasets, and its classification performance surpasses several state-of-the-art methods. Moreover, it effectively captures meaningful temporal varying and spatially coupled features with parameter insensitivity. Our method therefore provides a novel calibration choice for newly subjects participating in MI-BCIs.
机构:
Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Abiri, Reza
Borhani, Soheil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Borhani, Soheil
Sellers, Eric W.
论文数: 0引用数: 0
h-index: 0
机构:
East Tennessee State Univ, Dept Psychol, Johnson City, TN 37614 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Sellers, Eric W.
Jiang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kentucky, Coll Med, Dept Behav Sci, Lexington, KY 40356 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Jiang, Yang
Zhao, Xiaopeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
机构:
Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Abiri, Reza
Borhani, Soheil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Borhani, Soheil
Sellers, Eric W.
论文数: 0引用数: 0
h-index: 0
机构:
East Tennessee State Univ, Dept Psychol, Johnson City, TN 37614 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Sellers, Eric W.
Jiang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kentucky, Coll Med, Dept Behav Sci, Lexington, KY 40356 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA
Jiang, Yang
Zhao, Xiaopeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USAUniv Calif San Francisco, Dept Neurol, San Francisco, CA 94158 USA