A novel extension of Darbo's fixed point theorem and its application to a class of differential equations involving ( k , ψ)-Hilfer fractional derivative

被引:0
|
作者
Khokhar, Gurpreet Kaur [1 ]
Patel, Deepesh Kumar [1 ]
Patle, Pradip Ramesh [2 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Math, Nagpur, India
[2] VIT AP Univ Amravati, Sch Adv Sci, Dept Math, Amaravati, India
关键词
A-condensing operators; fixed point; k; psi )-Hilfer fractional di fferential equations; CONDENSING OPERATORS; EXISTENCE;
D O I
10.2298/FIL2410439K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a new generalised class of operators called as A-condensing operators is introduced. The fixed point as well as coupled fixed point results are established for the newly defined class of mappings. The rich theory of measure of noncompactness is utilized in this purpose. The new results extend some of the famous works in the literature. Finally, an application to ( k , psi )-Hilfer fractional di fferential equation of order 2 < p < 3 and type 0 <= q <= 1 is presented.
引用
收藏
页码:3439 / 3451
页数:13
相关论文
共 50 条
  • [31] Existence of Solutions for a System of Integral Equations Using a Generalization of Darbo's Fixed Point Theorem
    Mohammadi, Babak
    Shole Haghighi, Ali Asghar
    Khorshidi, Maryam
    De la Sen, Manuel
    Parvaneh, Vahid
    MATHEMATICS, 2020, 8 (04)
  • [32] Generalized Fixed Point Results with Application to Nonlinear Fractional Differential Equations
    Zahed, Hanadi
    Fouad, Hoda A.
    Hristova, Snezhana
    Ahmad, Jamshaid
    MATHEMATICS, 2020, 8 (07)
  • [33] An Extension of the Picard Theorem to Fractional Differential Equations with a Caputo-Fabrizio Derivative
    Marasi, H. R.
    Joujehi, A. Soltani
    Aydi, H.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [34] On the Fixed Point Theorem for Large Contraction Mappings with Applications to Delay Fractional Differential Equations
    Mesmouli, Mouataz Billah
    Akin, Elvan
    Iambor, Loredana Florentina
    Tunc, Osman
    Hassan, Taher S.
    FRACTAL AND FRACTIONAL, 2024, 8 (12)
  • [35] An Extension of Darbo's Theorem via Measure of Non-Compactness with its Application in the Solvability of a System of Integral Equations
    Matani, Behnam
    Roshan, Jamal Rezaei
    Hussain, Nawab
    FILOMAT, 2019, 33 (19) : 6315 - 6334
  • [36] THE APPLICATION OF MEIR-KEELER CONDENSING OPERATORS TO A NEW CLASS OF FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING ψ-CAPUTO FRACTIONAL DERIVATIVE
    Baitiche, Zidane
    Derbazi, Choukri
    Benchohra, Mouffak
    Cabada, Alberto
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (04): : 561 - +
  • [37] MEASURE OF NONCOMPACTNESS AND JS']JS-GERAGHTY-DARBO'S FIXED POINT THEOREM AND ITS APPLICATIONS TO A SYSTEM OF INTEGRAL EQUATIONS
    Parvaneh, Mohsen
    Farajzadeh, Ali
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (04) : 683 - 698
  • [38] New Generalization of Darbo's Fixed Point Theorem via α-admissible Simulation Functions with Application
    Monfared, Hossein
    Asadi, Mehdi
    Farajzadeh, Ali
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (02): : 161 - 171
  • [39] Applications of Measure of Noncompactness and Darbo's Fixed Point Theorem to Nonlinear Integral Equations in Banach Spaces
    Cakan, Umit
    Ozdemir, Ismet
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (05) : 641 - 673
  • [40] (k, ψ)-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Tariboon, Jessada
    MATHEMATICS, 2022, 10 (15)