Are We Losing Interest in Context-Aware Recommender Systems?

被引:0
|
作者
Rook, Laurens [1 ]
Zanker, Markus [2 ,3 ]
Jannach, Dietmar [3 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
[2] Free Univ Bozen Bolzano, Bolzano, Italy
[3] Univ Klagenfurt, Klagenfurt, Austria
关键词
Context; Context-awareness; Personalization; Recommender Systems; User Intent;
D O I
10.1145/3631700.3665190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contextual information is a prerequisite for timely offering of personalized decision support and recommendation. Yet, research on context-aware recommender systems (CARS) does not appear to be thriving, and finding public datasets containing context factors is a challenging task. We can make various assumptions about why this drop in research interest happened - be it ethical considerations or the popularity of opaque deep learning models that merely consider context in an implicit way. This is an unwelcome development. We argue that continued effort must be put on the creation of suitable datasets. Furthermore, we see significant opportunities in the development of next-generation CARS in the space of interactive AI assistants powered by Large Language Models.
引用
收藏
页码:229 / 230
页数:2
相关论文
共 50 条
  • [31] A Context Modelling System and Learning Tool for Context-Aware Recommender Systems
    Mettouris, Christos
    Achilleos, Achilleas P.
    Papadopoulos, George Angelos
    SCALING UP LEARNING FOR SUSTAINED IMPACT, 2013, 8095 : 619 - 620
  • [32] Context-Aware Techniques for Cross-Domain Recommender Systems
    Veras, Douglas
    Prudencio, Ricardo
    Ferraz, Carlos
    Bispo, Alysson
    Prota, Thiago
    2015 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2015), 2015, : 282 - 287
  • [33] COT: Contextual Operating Tensor for Context-Aware Recommender Systems
    Liu, Qiang
    Wu, Shu
    Wang, Liang
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 203 - 209
  • [34] A Survey of Context-Aware Recommender Systems: From an Evaluation Perspective
    Meng, Xiangwu
    Du, Yulu
    Zhang, Yujie
    Han, Xiaofeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 6575 - 6594
  • [35] Characterizing context-aware recommender systems: A systematic literature review
    Villegas, Norha M.
    Sanchez, Cristian
    Diaz-Cely, Javier
    Tamura, Gabriel
    KNOWLEDGE-BASED SYSTEMS, 2018, 140 : 173 - 200
  • [36] Context-Aware Music Recommender Systems for Groups: A Comparative Study
    Valera, Adrian
    Lozano Murciego, Alvaro
    Moreno-Garcia, Maria N.
    INFORMATION, 2021, 12 (12)
  • [37] GUMCARS: GENERAL USER MODEL FOR CONTEXT-AWARE RECOMMENDER SYSTEMS
    Inzunza, Sergio
    Juarez-Ramirez, Reyes
    Jimenez, Samantha
    Licea, Guillermo
    COMPUTING AND INFORMATICS, 2018, 37 (05) : 1149 - 1183
  • [38] Comparing context-aware recommender systems in terms of accuracy and diversity
    Panniello, Umberto
    Tuzhilin, Alexander
    Gorgoglione, Michele
    USER MODELING AND USER-ADAPTED INTERACTION, 2014, 24 (1-2) : 35 - 65
  • [39] Comparing context-aware recommender systems in terms of accuracy and diversity
    Umberto Panniello
    Alexander Tuzhilin
    Michele Gorgoglione
    User Modeling and User-Adapted Interaction, 2014, 24 : 35 - 65
  • [40] Context-Aware Recommender Systems for Learning: A Survey and Future Challenges
    Verbert, Katrien
    Manouselis, Nikos
    Ochoa, Xavier
    Wolpers, Martin
    Drachsler, Hendrik
    Bosnic, Ivana
    Duval, Erik
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2012, 5 (04): : 318 - 335