A COMBINED KAUP-NEWELL TYPE INTEGRABLE HAMILTONIAN HIERARCHY WITH FOUR POTENTIALS AND A HEREDITARY RECURSION OPERATOR

被引:5
|
作者
Ma, Wen-xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年
关键词
Matrix eigenvalue problem; zero curvature equation; integrable hier; archy; derivate nonlinear Schr & ouml; dinger equations; SOLITON HIERARCHY; EQUATIONS; EVOLUTION;
D O I
10.3934/dcdss.2024117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We aim to study a Kaup-Newell type matrix eigenvalue problem with four potentials, generated from a specific matrix Lie algebra, and compute an associated soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure. The Liouville integrability of the resulting soliton hierarchy is a consequence of the bi-Hamiltonian structure. An illustrative example is explicitly worked out, providing a novel integrable model consisting of combined derivative nonlinear Schr & ouml;dinger equations involving two arbitrary constants.
引用
收藏
页数:11
相关论文
共 11 条
  • [1] A combined Kaup-Newell type integrable hierarchy with four potentials and its bi-Hamiltonian formulation
    Ma, Wen-Xiu
    REVIEWS IN MATHEMATICAL PHYSICS, 2024,
  • [2] A combined generalized Kaup-Newell soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure
    Ma, Wen-Xiu
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 221 (01) : 1603 - 1614
  • [3] A combined integrable hierarchy with four potentials and its recursion operator and bi-Hamiltonian structure
    Ma, Wen-Xiu
    INDIAN JOURNAL OF PHYSICS, 2024, : 1063 - 1069
  • [4] An integrable generalization of the Kaup-Newell soliton hierarchy
    Ma, Wen-Xiu
    Shi, Chang-Guang
    Appiah, Emmanuel A.
    Li, Chunxia
    Shen, Shoufeng
    PHYSICA SCRIPTA, 2014, 89 (08)
  • [5] Nonlinear bi-integrable couplings of a generalized Kaup-Newell type soliton hierarchy
    Guan, Xue
    Zhang, Huiqun
    Liu, Wenjun
    OPTIK, 2018, 172 : 1003 - 1011
  • [6] Nonlinear integrable couplings of super Kaup-Newell hierarchy and its super Hamiltonian structures
    Wei Han-Yu
    Xia Tie-Cheng
    ACTA PHYSICA SINICA, 2013, 62 (12)
  • [7] Tri-integrable coupling of the Kaup-Newell soliton hierarchy and Lionville integrability
    Yu, Shuimeng
    Ye, Yujian
    Zhang, Jun
    Song, Junquan
    MODERN PHYSICS LETTERS B, 2016, 30 (21):
  • [8] An integrable generalization of the D-Kaup-Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy
    McAnally, Morgan
    Ma, Wen-Xiu
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 220 - 227
  • [9] A four-component hierarchy of combined integrable equations with bi-Hamiltonian formulations
    Ma, Wen-Xiu
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [10] A LIOUVILLE INTEGRABLE HIERARCHY WITH FOUR POTENTIALS AND ITS BI-HAMILTONIAN STRUCTURE
    Ma, Wen-Xiu
    ROMANIAN REPORTS IN PHYSICS, 2023, 75 (03)