Biotribological properties of 3D printed high-oriented short carbon fiber reinforced polymer composites for artificial joints

被引:4
|
作者
Li, Yang [1 ,2 ,3 ]
Li, Heng [4 ]
Kong, Ning [4 ]
Lu, Siwei [4 ]
Sun, Changning [4 ]
Tian, Run [4 ]
Wang, Kunzheng [4 ]
Li, Dichen [1 ,2 ,3 ]
Yang, Pei [4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710054, Peoples R China
[2] Xi An Jiao Tong Univ, Natl Med Prod Adm NMPA Key Lab Res & Evaluat Addit, Xian 710054, Peoples R China
[3] Xi An Jiao Tong Univ, Natl Innovat Platform Ctr Ind Educ Integrat Med Te, Xian 710054, Peoples R China
[4] Xi An Jiao Tong Univ, Affiliated Hosp 2, Dept Bone & Joint Surg, Xian 710004, Peoples R China
来源
BIOMATERIALS ADVANCES | 2024年 / 161卷
基金
中国国家自然科学基金;
关键词
High-oriented SCF; Polymer composites; Fused deposition modeling; Biotribological properties; Mechanical properties; MECHANICAL-PROPERTIES; ORIENTATION; PEEK; BEHAVIOR; WEAR;
D O I
10.1016/j.bioadv.2024.213888
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Short carbon fiber (SCF) reinforced polymer composites are expected to possess outstanding biotribological and mechanical properties in certain direction, while the non -oriented SCF weakens its reinforcing effect in the matrix. In this work, high -oriented SCF was achieved during nozzle extrusion, and then SCF reinforced polyetherether -ketone (PEEK) composites were fabricated by fused deposition modeling (FDM). The concrete orientation process of SCF was theoretically simulated, and significant shear stress difference was generated at both ends of SCF. As a result, the SCF was distributed in the matrix in a hierarchical structure, containing surface layer I, II and core layer. Moreover, the SCF was oriented highly along the printing direction and demonstrated a more competitive orientation distribution compared to other studies. The SCF/PEEK composites showed a considerable improvement in wear resistance by 44 % due to self-lubricating and load -bearing capability of SCF. Besides, it demonstrated enhancements in Brinell hardness, compressive and impact strength by 48.52 %, 16.42 % and 53.64 %, respectively. In addition, SCF/PEEK composites also showed good cytocompatibility. The findings gained herein are useful for developing the high -oriented SCF reinforced polymer composites with superior biotribological and mechanical properties for artificial joints.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] An investigation into printing pressure of 3D printed continuous carbon fiber reinforced composites
    Zhang, Zhongsen
    Long, Yu
    Yang, Zhe
    Fu, Kunkun
    Li, Yan
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2022, 162
  • [22] In-situ 3D fracture propagation of short carbon fiber reinforced polymer composites
    Wang, Kaifeng
    Pei, Shenli
    Li, Yang
    Li, Jingjing
    Zeng, Danielle
    Su, Xuming
    Xiao, Xianghui
    Chen, Nannan
    COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 182
  • [23] RETRACTED: The moisture absorption of 3D printed short carbon fibre reinforced polyamide
    Hou, Y.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 184
  • [24] Exploiting fiber control for delayed failure in 3D printed fiber reinforced polymer composites
    Vemuganti, Shreya
    Soliman, Eslam
    Taha, Mahmoud Reda
    COMPOSITES PART B-ENGINEERING, 2023, 251
  • [25] Effects of crystallinity control on mechanical properties of 3D-printed short-carbon-fiber-reinforced polyether ether ketone composites
    Yang, Dong
    Cao, Yi
    Zhang, Zhikun
    Yin, Yifa
    Li, Dichen
    POLYMER TESTING, 2021, 97
  • [26] Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing
    Bhandari, Sunil
    Lopez-Anido, Roberto A.
    Gardner, Douglas J.
    ADDITIVE MANUFACTURING, 2019, 30
  • [27] A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    COMPOSITE STRUCTURES, 2020, 232
  • [28] High-pressure interfacial impregnation by micro-screw in-situ extrusion for 3D printed continuous carbon fiber reinforced nylon composites
    Liu, Tengfei
    Tian, Xiaoyong
    Zhang, Yayuan
    Cao, Yi
    Li, Dichen
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 130
  • [29] Compressive Properties of 3D Printed Polylactic Acid Matrix Composites Reinforced by Short Fibers and SiC Nanowires
    Mei, Hui
    Yin, Xiaokang
    Zhang, Jiongjiong
    Zhao, Wenyu
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (05)
  • [30] Manipulating interfacial bond for controlling load transfer in 3D printed fiber reinforced polymer composites
    Vemuganti, Shreya
    Soliman, Eslam
    Taha, Mahmoud M. Reda
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024,