Epitaxial Growth of Large-Area Monolayers and van der Waals Heterostructures of Transition-Metal Chalcogenides via Assisted Nucleation

被引:12
作者
Rajan, Akhil [1 ]
Buchberger, Sebastian [1 ,2 ]
Edwards, Brendan [1 ]
Zivanovic, Andela [1 ,2 ]
Kushwaha, Naina [1 ,3 ]
Bigi, Chiara [1 ]
Nanao, Yoshiko [1 ]
Saika, Bruno K. [1 ]
Armitage, Olivia R. [1 ]
Wahl, Peter [1 ,4 ]
Couture, Pierre [5 ]
King, Phil D. C. [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Scotland
[2] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
[3] Res Complex Harwell, STFC Cent Laser Facil, Harwell Campus, Didcot OX11 0QX, England
[4] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany
[5] Univ Surrey, Ion Beam Ctr, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
2D materials; electronic properties; molecular beam epitaxy; nucleation; MOLECULAR-BEAM EPITAXY; TRANSPORT-PROPERTIES; VALLEY POLARIZATION; GRAPHENE; DEPOSITION; MOS2; LAYERS;
D O I
10.1002/adma.202402254
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The transition-metal chalcogenides include some of the most important and ubiquitous families of 2D materials. They host an exceptional variety of electronic and collective states, which can in principle be readily tuned by combining different compounds in van der Waals heterostructures. Achieving this, however, presents a significant materials challenge. The highest quality heterostructures are usually fabricated by stacking layers exfoliated from bulk crystals, which - while producing excellent prototype devices - is time consuming, cannot be easily scaled, and can lead to significant complications for materials stability and contamination. Growth via the ultra-high vacuum deposition technique of molecular-beam epitaxy (MBE) should be a premier route for 2D heterostructure fabrication, but efforts to achieve this are complicated by non-uniform layer coverage, unfavorable growth morphologies, and the presence of significant rotational disorder of the grown epilayer. This work demonstrates a dramatic enhancement in the quality of MBE grown 2D materials by exploiting simultaneous deposition of a sacrificial species from an electron-beam evaporator during the growth. This approach dramatically enhances the nucleation of the desired epi-layer, in turn enabling the synthesis of large-area, uniform monolayers with enhanced quasiparticle lifetimes, and facilitating the growth of epitaxial van der Waals heterostructures. Molecular-beam epitaxy of 2D chalcogenides typically yields small, disconnected islands, with premature onset of multilayer formation. This work reports how utilizing excited ions of a sacrificial species during the growth can dramatically enhance nucleation of the epitaxial layer, enabling growth of large-area monolayers with enhanced carrier lifetimes and facilitating the fabrication of all-epitaxial van der Waals heterostructures. image
引用
收藏
页数:9
相关论文
共 53 条
[1]   Epitaxial growth of single-orientation high-quality MoS2 monolayers [J].
Bana, Harsh ;
Travaglia, Elisabetta ;
Bignardi, Luca ;
Lacovig, Paolo ;
Sanders, Charlotte E. ;
Dendzik, Maciej ;
Michiardi, Matteo ;
Bianchi, Marco ;
Lizzit, Daniel ;
Presel, Francesco ;
De Angelis, Dario ;
Apostol, Nicoleta ;
Das, Pranab Kumar ;
Fujii, Jun ;
Vobornik, Ivana ;
Larciprete, Rosanna ;
Baraldi, Alessandro ;
Hofmann, Philip ;
Lizzit, Silvano .
2D MATERIALS, 2018, 5 (03)
[2]   Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2 [J].
Baugher, Britton W. H. ;
Churchill, Hugh O. H. ;
Yang, Yafang ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2013, 13 (09) :4212-4216
[3]   Growth of zinc blende MgS/ZnSe single quantum wells by molecular-beam epitaxy using ZnS as a sulphur source [J].
Bradford, C ;
O'Donnell, CB ;
Urbaszek, B ;
Balocchi, A ;
Morhain, C ;
Prior, KA ;
Cavenett, BC .
APPLIED PHYSICS LETTERS, 2000, 76 (26) :3929-3931
[4]   Charge density wave transition in single-layer titanium diselenide [J].
Chen, P. ;
Chan, Y. -H. ;
Fang, X. -Y. ;
Zhang, Y. ;
Chou, M. Y. ;
Mo, S. -K. ;
Hussain, Z. ;
Fedorov, A. -V. ;
Chiang, T. -C. .
NATURE COMMUNICATIONS, 2015, 6
[5]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[6]   Chalcogen Precursor Effect on Cold-Wall Gas-Source Chemical Vapor Deposition Growth of WS2 [J].
Choudhury, Tanushree H. ;
Simchi, Hamed ;
Boichot, Raphael ;
Chubarov, Mikhail ;
Mohney, Suzanne E. ;
Redwing, Joan M. .
CRYSTAL GROWTH & DESIGN, 2018, 18 (08) :4357-4364
[7]   SURFACTANTS IN EPITAXIAL-GROWTH [J].
COPEL, M ;
REUTER, MC ;
KAXIRAS, E ;
TROMP, RM .
PHYSICAL REVIEW LETTERS, 1989, 63 (06) :632-635
[8]   Nucleation and morphology of homoepitaxial Pt(111)-films grown with ion beam assisted deposition [J].
Esch, S ;
Breeman, M ;
Morgenstern, M ;
Michely, T ;
Comsa, G .
SURFACE SCIENCE, 1996, 365 (02) :187-204
[9]   INFLUENCE OF GA-AS-TE INTERFACIAL PHASES ON THE ORIENTATION OF EPITAXIAL CDTE ON GAAS [J].
FELDMAN, RD ;
AUSTIN, RF ;
KISKER, DW ;
JEFFERS, KS ;
BRIDENBAUGH, PM .
APPLIED PHYSICS LETTERS, 1986, 48 (03) :248-250
[10]   Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe2 [J].
Feng, Jiagui ;
Biswas, Deepnarayan ;
Rajan, Akhil ;
Watson, Matthew D. ;
Mazzola, Federico ;
Clark, Oliver J. ;
Underwood, Kaycee ;
Markovic, Igor ;
McLaren, Martin ;
Hunter, Andrew ;
Burn, David M. ;
Duffy, Liam B. ;
Barua, Sourabh ;
Balakrishnan, Geetha ;
Bertran, Francois ;
Le Fevre, Patrick ;
Kim, Timur K. ;
van der Laan, Gerrit ;
Hesjedal, Thorsten ;
Wahl, Peter ;
King, Phil D. C. .
NANO LETTERS, 2018, 18 (07) :4493-4499