Ion Depletion Microenvironments Mapped at Active Electrochemical Interfaces with Operando Freezing Cryo-Electron Microscopy

被引:5
作者
Dutta, Nikita S. [1 ]
Weddle, Peter J. [2 ]
Hathaway, Oscar [1 ]
Al-Jassim, Mowafak [1 ]
Jungjohann, Katherine [1 ]
机构
[1] Natl Renewable Energy Lab, Mat Chem & Computat Sci Directorate, Golden, CO 80401 USA
[2] Natl Renewable Energy Lab, Mech & Thermal Engn Sci Directorate, Golden, CO 80401 USA
关键词
TRANSMISSION ELECTRON-MICROSCOPY; LITHIUM METAL ANODES; IN-SITU; DENDRITIC GROWTH; INTERPHASE; CHEMISTRY; ELECTRODEPOSITION; DISSOLUTION; EVOLUTION;
D O I
10.1021/acsenergylett.4c00622
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interfacial structural and chemical evolution underpins safety, energy density, and lifetime in batteries and other electrochemical systems. During lithium electrodeposition, local nonequilibrium conditions can arise that promote heterogeneous lithium morphologies but are challenging to directly study, particularly at the nanoscale. Here we map chemical microenvironments at the active copper/electrolyte interface during lithium electrodeposition, presenting operando freezing cryogenic electron microscopy (cryo-EM), a new method, to lock in structures arising in coin cells. We find local ion depletion is correlated with lithium whiskers but not planar lithium, and we hypothesize that depletion stems from root-growing whiskers consuming ions at the growth interface while also restricting ion transport through local electrolyte. This can allow dangerous lithium morphologies to propagate, even in concentrated electrolytes, as ion depletion favors dendritic growth. Operando freezing cryo-EM thus reveals local microenvironments at active electrochemical interfaces to enable direct investigation of site-specific, nonequilibrium conditions that arise during operation of energy devices.
引用
收藏
页码:2464 / 2471
页数:8
相关论文
共 34 条
[1]   Mathematical model of the dendritic growth during lithium electrodeposition [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2013, 232 :23-28
[2]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[3]   Morphological and Chemical Mapping of Columnar Lithium Metal [J].
Chang, Wesley ;
Park, Jeung Hun ;
Dutta, Nikita S. ;
Arnold, Craig B. ;
Steingart, Daniel A. .
CHEMISTRY OF MATERIALS, 2020, 32 (07) :2803-2814
[4]   Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes [J].
Frenck, Louise ;
Sethi, Gurmukh K. ;
Maslyn, Jacqueline A. ;
Balsara, Nitash P. .
FRONTIERS IN ENERGY RESEARCH, 2019, 7
[5]   Probing the Evolution of Surface Chemistry at the Silicon-Electrolyte Interphase via In Situ Surface-Enhanced Raman Spectroscopy [J].
Ha, Yeyoung ;
de Villers, Bertrand J. Tremolet ;
Li, Zhifei ;
Xu, Yun ;
Stradins, Paul ;
Zakutayev, Andriy ;
Burrell, Anthony ;
Han, Sang-Don .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (01) :286-291
[6]   Thermodynamic origin of dendrite growth in metal anode batteries [J].
Hagopian, Arthur ;
Doublet, Marie-Liesse ;
Filhol, Jean-Sebastien .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (12) :5186-5197
[7]   Dynamic Structure and Chemistry of the Silicon Solid-Electrolyte Interphase Visualized by Cryogenic Electron Microscopy [J].
Huang, William ;
Wang, Jiangyan ;
Braun, Michael R. ;
Zhang, Zewen ;
Li, Yuzhang ;
Boyle, David T. ;
McIntyre, Paul C. ;
Cui, Yi .
MATTER, 2019, 1 (05) :1232-1245
[8]   Electrochemomechanics of lithium dendrite growth [J].
Jana, Aniruddha ;
Woo, Sang Inn ;
Vikrant, K. S. N. ;
Garcia, R. Edwin .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (12) :3595-3607
[9]   Cryo-Electron Microscopy for Unveiling the Sensitive Battery Materials [J].
Ju, Zhijin ;
Yuan, Huadong ;
Sheng, Ouwei ;
Liu, Tiefeng ;
Nai, Jianwei ;
Wang, Yao ;
Liu, Yujing ;
Tao, Xinyong .
SMALL SCIENCE, 2021, 1 (11)
[10]   In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries [J].
Karakulina, Olesia M. ;
Demortiere, Arnaud ;
Dachraoui, Walid ;
Abakumov, Artern M. ;
Hadermann, Joke .
NANO LETTERS, 2018, 18 (10) :6286-6291