INTERSECTION DE RHAM COMPLEXES IN POSITIVE CHARACTERISTIC

被引:0
|
作者
Sheng, Mao [1 ,2 ]
Zhang, Zebao [3 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Chongqing Univ Technol, Math Sci Res Ctr, Hongguang Rd 69, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
NONABELIAN HODGE THEORY; HIGGS BUNDLES; L2;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a positive characteristic analogue of intersection cohomology theory for variations of Hodge structure. It includes: a) the de Rham-Higgs comparison theorem for the intersection de Rham complex; b) the E1-degeneration theorem for the intersection de Rham complex of a periodic de Rham bundle; c) the Kodaira-Saito vanishing theorem for the intersection cohomology groups of a periodic Higgs bundle. These results generalize the Kodaira-Saito vanishing theorem of Arapura [Ar]. As an application, we give an algebraic proof of the E1-degeneration theo[KK], and the vanishing theorem of Saito [Sa] for VHSs of geometric origin.
引用
收藏
页码:551 / 602
页数:52
相关论文
共 50 条