Recent Progress of Gel Polymer Electrolytes for Sodium Sulfur Batteries

被引:0
|
作者
Nguyen, Hao [1 ]
Wei, Shuya [1 ]
机构
[1] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
sodium sulfur batteries; gel polymer electrolytes; Na+ conducting electrolytes; polysulfides; shuttle effect; electrolyte fabrications; LITHIUM-ION BATTERIES; POLYSULFIDE SHUTTLE; CELL CHEMISTRY; PERFORMANCE; LIQUID; CATHODE; ENERGY; ELECTROCHEMISTRY; NANOCOMPOSITE; NANOPARTICLES;
D O I
10.1021/acsaelm.3c01841
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sodium sulfur batteries (NaSBs) stand out as one of the most promising energy storage systems due to the natural abundance of raw materials, outstanding specific capacity, and excellent energy density. Yet, conventional NaSBs, which operate at high temperature (300-350 degrees C), are not applicable for daily energy storage such as batteries for mobile devices and are limited to be stationary energy storage due to their nature of extreme operating conditions and dangerous explosion hazards. On the other hand, standard aqueous room temperature NaSBs, which use liquid electrolytes, are facing many undesirable problems such as growth of sodium dendrites, short cycle life, leakage, and fire hazards. Ultimately, the sodium polysulfide shuttle effect in liquid electrolytes still remains the number one challenge in room temperature NaSBs development. Gel polymer electrolytes (GPEs) are a combination of liquid electrolytes and polymers, acting not only as electrolytes but also as a separator which can suppress current challenges and improve battery performance in room temperature NaSBs. In this review, detailed discussions are presented on physical and chemical properties of GPEs that inhibit the shuttle effect of polysulfides, unify Na+ ion transport, and prevent Na dendrite formation. Various polymer matrices for GPEs in NaSBs, such as PEO, PVDF, PVDF-HFP, PMMA, and cross-linked polymers, are discussed. Diverse fabrication techniques for GPEs in NaSBs, including solution casting, phase inversion, an in situ polymerization strategy, electrospinning, and UV curing, are explored. This review offers a prospect of possibilities for the practical application of GPEs in NaSBs with great electrochemical performance.
引用
收藏
页码:8671 / 8688
页数:18
相关论文
共 50 条
  • [41] Recent progress, challenges, and perspectives in the development of solid-state electrolytes for sodium batteries
    Ahmad, Haseeb
    Kubra, Khadija Tul
    Butt, Annam
    Nisar, Umair
    Iftikhar, Faiza Jan
    Ali, Ghulam
    JOURNAL OF POWER SOURCES, 2023, 581
  • [42] Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries
    Huang, Shuo
    Zhu, Jiacai
    Tian, Jinlei
    Niu, Zhiqiang
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (64) : 14480 - 14494
  • [43] Review on the recent progress in the nanocomposite polymer electrolytes on the performance of lithium-ion batteries
    Kanimozhi, G.
    Naresh, Nibagani
    Kumar, Harish
    Satyanarayana, N.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (06) : 7137 - 7174
  • [44] A Study on the Effects of Porous Structures of Polymer Matrixes on the Properties of Gel Polymer Electrolytes for Lithium Ion Batteries
    Lu, Yu-Hsuan
    Liu, Ying-Ling
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (05): : 3048 - 3057
  • [45] Dendrite-Free Solid-State Li Metal Batteries Enabled by Bifunctional Polymer Gel Electrolytes
    Wu, Qian
    Yang, Yun
    Chen, Zheng
    Su, Qinting
    Huang, Songde
    Song, Dakun
    Zhu, Caizhen
    Ma, Rui
    Li, Cuihua
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 9420 - 9430
  • [46] Recent Development in Topological Polymer Electrolytes for Rechargeable Lithium Batteries
    Liu, Yu
    Zeng, Qinghui
    Li, Zhenfeng
    Chen, Anqi
    Guan, Jiazhu
    Wang, Honghao
    Wang, Shi
    Zhang, Liaoyun
    ADVANCED SCIENCE, 2023, 10 (15)
  • [47] Progress on High Voltage PEO-based Polymer Solid Electrolytes in Lithium Batteries
    Hou, Wenhui
    Ou, Yu
    Liu, Kai
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (03) : 735 - 743
  • [48] Polymer electrolytes for sodium-ion batteries
    Gebert, Florian
    Knott, Jonathan
    Gorkin, Robert, III
    Chou, Shu-Lei
    Dou, Shi-Xue
    ENERGY STORAGE MATERIALS, 2021, 36 : 10 - 30
  • [49] Recent Progress on the Low-Temperature Lithium Metal Batteries and Electrolytes
    Huang, Yiyu
    Li, Hongyan
    Sheng, Ouwei
    Tao, Xinyong
    Jin, Chengbin
    ADVANCED SUSTAINABLE SYSTEMS, 2023,
  • [50] Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries
    Jiang, Bowen
    Wei, Ying
    Wu, Jingyi
    Cheng, Hang
    Yuan, Lixia
    Li, Zhen
    Xu, Henghui
    Huang, Yunhui
    ENERGYCHEM, 2021, 3 (05)