Comprehensive phylogenomic analyses revealed higher-level phylogenetic relationships within the Cucujiformia

被引:1
作者
Li, Xing-Hao [1 ]
Li, Ru-Fan [1 ]
Hu, Fang-Jing [1 ]
Zheng, Shuai [1 ]
Rao, Fu-Qiang [1 ]
An, Rong [2 ]
Li, Yong-Hong [2 ]
Liu, De-Guang [1 ,3 ]
机构
[1] Northwest A&F Univ, Coll Plant Protect, Key Lab Plant Protect Resources & Pest Management, Minist Educ, Yangling 712100, Peoples R China
[2] Hybrid Rapeseed Res Ctr Shaanxi Prov, Yangling 712100, Peoples R China
[3] Northwest A&F Univ, Coll Plant Protect, Key Lab Integrated Pest Management Crops Northwest, Minist Agr & Rural Affairs, Yangling 712100, Peoples R China
关键词
Coleoptera; Cucujiformia; Cucujoidea; macro-evolution; phylogeny; transcriptome; MISSING DATA; MITOCHONDRIAL GENOMES; INFERENCE; HETEROGENEITY; PERFORMANCE; CHARACTERS; ORIGIN; IMPACT; GENES;
D O I
10.1111/jse.13079
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Cucujiformia, with remarkable morphological, ecological, and behavioral diversity, is the most evolutionarily successful group within Coleoptera. However, the phylogenetic relationships among superfamilies within Cucujiformia remain elusive. To address the issues, we conducted a transcriptome-based macro-evolutionary study of this lineage. We sequenced the genomes and transcriptomes of three species from the superfamily Curculionoidea (two from Curculionidae and one from Brentidae), and obtained a data set of more than 569 990 amino acid alignments from 143 species of Cucujiformia. With the most complete collection of whole genomes and transcriptomes so far, we compared the performance of different data matrices with universal-single-copy orthologs (USCO). The resultant trees based on different data sets were consistent for the majority of deep nodes. Two USCO amino acid matrices (i.e., USCO75 and USCO750-abs80) provided well-resolved topology. The analyses confirm that Cucujoidea sensu Robertson et al. 2015 is a nonmonophyletic group, consisting of Erotyloidea, Nitiduloidea, and Cucujoidea sensu Cai et al. 2022. Moreover, Erotyloidea is the early-diverging group, followed by the clade Nitiduloidea. The preferred topologies supported a "basal" split of Coccinelloidea from the remaining superfamilies, and Cleroidea formed the second splitting group. The following phylogeny was supported at the superfamily level in Cucujiformia: (Coccinelloidea, (Cleroidea, ((Lymexyloidea, Tenebrionoidea), (Erotyloidea, (Nitiduloidea, (Cucujoidea, (Chrysomeloidea, Curculionoidea))))))). Our comprehensive analyses recovered well-resolved higher-level phylogenetic relationships within the Cucujiformia, providing a stable framework for comprehending its evolutionary history. Comprehensive phylogenetic analyses reveal new higher-level phylogenetic relationships among taxa in Cucujiformia, providing a stable framework for clarifying the evolutionary history of this diverse and successful group. image
引用
收藏
页码:1137 / 1149
页数:13
相关论文
共 57 条
[1]   ExaBayes: Massively Parallel Bayesian Tree Inference for the Whole-Genome Era [J].
Aberer, Andre J. ;
Kobert, Kassian ;
Stamatakis, Alexandros .
MOLECULAR BIOLOGY AND EVOLUTION, 2014, 31 (10) :2553-2556
[2]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[3]   Building the Coleoptera tree-of-life for >8000 species: composition of public DNA data and fit with Linnaean classification [J].
Bocak, Ladislav ;
Barton, Christopher ;
Crampton-Platt, Alex ;
Chesters, Douglas ;
Ahrens, Dirk ;
Vogler, Alfried P. .
SYSTEMATIC ENTOMOLOGY, 2014, 39 (01) :97-110
[4]   Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (maoricicada) using multiple-comparison tests of tree topology [J].
Buckley, TR ;
Simon, C ;
Shimodaira, H ;
Chambers, GK .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (02) :223-234
[5]  
Bushnell B., 2014, BBTOOLS ONLINE
[6]   Integrated phylogenomics and fossil data illuminate the evolution of beetles [J].
Cai, Chenyang ;
Tihelka, Erik ;
Giacomelli, Mattia ;
Lawrence, John F. ;
Kundrata, Robin ;
Yamamoto, Shuhei ;
Thayer, Margaret K. ;
Newton, Alfred F. ;
Leschen, Richard A. B. ;
Gimmel, Matthew L. ;
Lu, Liang ;
Engel, Michael S. ;
Bouchard, Patrice ;
Huang, Diying ;
Pisani, Davide ;
Donoghue, Philip C. J. .
ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (03)
[7]   trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses [J].
Capella-Gutierrez, Salvador ;
Silla-Martinez, Jose M. ;
Gabaldon, Toni .
BIOINFORMATICS, 2009, 25 (15) :1972-1973
[8]   Genome-wide survey of nuclear protein-coding markers for beetle phylogenetics and their application in resolving both deep and shallow-level divergences [J].
Che, Li-Heng ;
Zhang, Shao-Qian ;
Li, Yun ;
Liang, Dan ;
Pang, Hong ;
Slipinski, Adam ;
Zhang, Peng .
MOLECULAR ECOLOGY RESOURCES, 2017, 17 (06) :1342-1358
[9]   Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample [J].
Crampton-Platt, Alex ;
Timmermans, Martijn J. T. N. ;
Gimmel, Matthew L. ;
Kutty, Sujatha Narayanan ;
Cockerill, Timothy D. ;
Khen, Chey Vun ;
Vogler, Alfried P. .
MOLECULAR BIOLOGY AND EVOLUTION, 2015, 32 (09) :2302-2316
[10]   THE PHYLOGENY OF COLEOPTERA [J].
CROWSON, RA .
ANNUAL REVIEW OF ENTOMOLOGY, 1960, 5 :111-134