Quantum Simulation of Bound State Scattering

被引:5
作者
Turco, Matteo [1 ,2 ,3 ,6 ]
Quinta, Goncalo [7 ]
Seixas, Joao [1 ,2 ,4 ,6 ]
Omar, Yasser [1 ,2 ,5 ,6 ]
机构
[1] Ctr Fis & Engn Mat Avancados CeFEMA, Phys Informat & Quantum Technol Grp, Lisbon, Portugal
[2] Lab Phys Mat & Emergent Technol, Lisbon, Portugal
[3] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal
[4] Univ Lisbon, Dept Fis, Inst Super Tecn, Lisbon, Portugal
[5] Univ Lisbon, Dept Matemat, Inst Super Tecn, Lisbon, Portugal
[6] PQI Portuguese Quantum Inst, Lisbon, Portugal
[7] Inst Telecomun, Lisbon, Portugal
来源
PRX QUANTUM | 2024年 / 5卷 / 02期
关键词
SYSTEMS;
D O I
10.1103/PRXQuantum.5.020311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The last few years have seen rapid development of applications of quantum computation to quantum field theory. The first algorithms for quantum simulation of scattering have been proposed in the context of scalar and fermionic theories, requiring thousands of logical qubits. These algorithms are not suitable to simulate scattering of incoming bound states, as the initial -state preparation relies typically on adiabatically transforming wavepackets of the free theory into wavepackets of the interacting theory. In this paper we present a strategy to excite wavepackets of the interacting theory directly from the vacuum of the interacting theory, allowing the preparation of states of composite particles. This is the first step towards digital quantum simulation of scattering of bound states. The approach is based on the Haag-Ruelle scattering theory, which provides a way to construct creation and annihilation operators of a theory in a full, nonperturbative framework. We provide a quantum algorithm requiring a number of ancillary qubits that is logarithmic in the size of the wavepackets, and with a success probability vanishing at most like a polynomial in the lattice parameters and the energy of the wavepacket. The gate complexity for a single iteration of the circuit is equivalent to that of a time evolution for a fixed time. Furthermore, we propose a complete protocol for scattering simulation using this algorithm. We study its efficiency and find improvements with respect to previous algorithms in the literature.
引用
收藏
页数:18
相关论文
共 85 条
[1]   Simulating one-dimensional quantum chromodynamics on a quantum computer: Real-time evolutions of tetra- and pentaquarks [J].
Atas, Yasar Y. ;
Haase, Jan F. ;
Zhang, Jinglei ;
Wei, Victor ;
Pfaendler, Sieglinde M. -L. ;
Lewis, Randy ;
Muschik, Christine A. .
PHYSICAL REVIEW RESEARCH, 2023, 5 (04)
[2]   SU(2) hadrons on a quantum computer via a variational approach [J].
Atas, Yasar Y. ;
Zhang, Jinglei ;
Lewis, Randy ;
Jahanpour, Amin ;
Haase, Jan F. ;
Muschik, Christine A. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Strategies for quantum-optimized construction of interpolating operators in classical simulations of lattice quantum field theories [J].
Avkhadiev, A. ;
Shanahan, P. E. ;
Young, R. D. .
PHYSICAL REVIEW D, 2023, 107 (05)
[4]   Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing [J].
Avkhadiev, A. ;
Shanahan, P. E. ;
Young, R. D. .
PHYSICAL REVIEW LETTERS, 2020, 124 (08)
[5]   Lieb-Robinson Bounds, Arveson Spectrum and Haag-Ruelle Scattering Theory for Gapped Quantum Spin Systems [J].
Bachmann, Sven ;
Dybalski, Wojciech ;
Naaijkens, Pieter .
ANNALES HENRI POINCARE, 2016, 17 (07) :1737-1791
[6]   Nearly Optimal Quantum Algorithm for Generating the Ground State of a Free Quantum Field Theory [J].
Bagherimehrab, Mohsen ;
Sanders, Yuval R. ;
Berry, Dominic W. ;
Brennen, Gavin K. ;
Sanders, Barry C. .
PRX QUANTUM, 2022, 3 (02)
[7]   PARTICLE SCATTERING IN EUCLIDEAN LATTICE FIELD-THEORIES [J].
BARATA, JCA ;
FREDENHAGEN, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (03) :507-519
[8]   Single-particle digitization strategy for quantum computation of a φ4 scalar field theory [J].
Barata, Joao ;
Mueller, Niklas ;
Tarasov, Andrey ;
Venugopalan, Raju .
PHYSICAL REVIEW A, 2021, 103 (04)
[9]   Quantum algorithm for the classification of supersymmetric top quark events [J].
Bargassa, Pedrame ;
Cabos, Timothee ;
Choi, Artur Cordeiro Oudot ;
Hessel, Timothee ;
Cavinato, Samuele .
PHYSICAL REVIEW D, 2021, 104 (09)
[10]   Quantum Simulation for High-Energy Physics [J].
Bauer, Christian W. ;
Davoudi, Zohreh ;
Balantekin, A. Baha ;
Bhattacharya, Tanmoy ;
Carena, Marcela ;
de Jong, Wibe A. ;
Draper, Patrick ;
El-Khadra, Aida ;
Gemelke, Nate ;
Hanada, Masanori ;
Kharzeev, Dmitri ;
Lamm, Henry ;
Li, Ying-Yin ;
Liu, Junyu ;
Lukin, Mikhail ;
Meurice, Yannick ;
Monroe, Christopher ;
Nachman, Benjamin ;
Pagano, Guido ;
Preskill, John ;
Rinaldi, Enrico ;
Roggero, Alessandro ;
Santiago, David I. ;
Savage, Martin J. ;
Siddiqi, Irfan ;
Siopsis, George ;
Van Zanten, David ;
Wiebe, Nathan ;
Yamauchi, Yukari ;
Yeter-Aydeniz, Kuebra ;
Zorzetti, Silvia .
PRX QUANTUM, 2023, 4 (02)