The gas production characteristics and catastrophic hazards evaluation of thermal runaway for LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium-ion batteries under different SOCs

被引:9
作者
Qi, Chuang [1 ,2 ]
Liu, Zhenyan [1 ]
Lin, Chunjing [1 ,3 ]
Liu, Xi [1 ]
Liu, Dinghong [4 ]
Li, Zhaoyang [4 ]
Yi, Aibin [4 ]
机构
[1] Chongqing Univ Technol, Key Lab Adv Mfg, Technol Automobile Parts, Minist Educ, Chongqing 400054, Peoples R China
[2] Guangxi Univ Sci & Technol, Guangxi key Lab Automobile Components & Vehicle te, Liuzhou, Peoples R China
[3] CATARC Changzhou Automot Engn Res Inst Co Ltd, Changzhou, Peoples R China
[4] CATARC Automot Test Ctr Changzhou Co Ltd, Changzhou, Peoples R China
关键词
Lithium -ion battery; Thermal runaway; Gas production; Catastrophic hazards; Analytic hierarchy process method; CATHODE MATERIALS; BEHAVIOR; CELLS; CALORIMETRY; REACTIVITY; ABUSE;
D O I
10.1016/j.est.2024.111678
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium -ion batteries (LIBs) are widely used as electrochemical energy storage systems in electric vehicles due to their high energy density and long cycle life. However, fire accidents present a trend of frequent occurrence caused by thermal runaway (TR) of LIBs, so it is especially important to evaluate the catastrophic hazards of these LIBs. This study conducted the adiabatic TR test coupled gas production test, Gas Chromatography -Mass Spectrometry test, and explosion limit test on a commercial LIB with Ni 0.5 Co 0.2 Mn 0.3 as the cathode material at different states of charge (SOCs). The results show that the TR temperature and the maximum temperature at low SOC are lower compared to that at a high SOC. The probability of LIBs TR at less than SOC = 50 % is small and also causing less harm. For the gas production characteristics, the lower the SOC of the battery, the lower the gas production volume. The peak and steady-state gas production increase with the increase of SOC. For the mixed gases generated during TR, the content of CO 2 shows a trend of decreasing with the increasing of battery SOC, while that of H 2 and CO increase with the increasing of SOC. For the explosion limit of the mixed gas, the lower explosion limit and upper explosion limit decrease and increase with the increasing of SOC, respectively. Finally, based on the seven parameters related to the TR gas production of LIBs and so on, the analytic hierarchy process method was used to establish a LIB TR disaster -causing hazard evaluation system. The evaluation system can quantitatively evaluate the thermal safety of a LIB. This is instructive for establishing a comprehensive quantitative evaluation method for battery safety in practical engineering applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Na and Cl co-doping modified LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion battery
    Song, Liubin
    Zheng, Youhang
    Kuang, Yinjie
    Zhao, Tingting
    Xia, Yubo
    Xiao, Minzhi
    Xiang, Youtao
    Xiao, Zhongliang
    Tang, Fuli
    NANOTECHNOLOGY, 2023, 34 (36)
  • [22] The preparation and role of Li2ZrO3 surface coating LiNi0.5Co0.2Mn0.3O2 as cathode for lithium-ion batteries
    Xu, Yue
    Liu, Yang
    Lu, Zhongpei
    Wang, Haiying
    Sun, Deqin
    Yang, Gang
    APPLIED SURFACE SCIENCE, 2016, 361 : 150 - 156
  • [23] Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions
    Zhao Lei
    Zhu Maotao
    Xu Xiaoming
    Gao Junkui
    APPLIED THERMAL ENGINEERING, 2019, 159
  • [24] Surface modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with Li2O-B2O3-LiBr for lithium-ion batteries
    Wang, Lei
    Hu, Yun Hang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (09) : 4644 - 4651
  • [25] Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials
    Kong, Ji-Zhou
    Zhou, Fei
    Wang, Chuan-Bao
    Yang, Xiao-Yan
    Zhai, Hai-Fa
    Li, Hui
    Li, Jun-Xiu
    Tang, Zhou
    Zhang, Shi-Qin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 554 : 221 - 226
  • [26] Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis
    Ando, Keisuke
    Matsuda, Tomoyuki
    Imamura, Daichi
    JOURNAL OF POWER SOURCES, 2018, 390 : 278 - 285
  • [27] Nanocrystalline LiNi0.4Mn0.4Co0.2O2 cathode for lithium-ion batteries
    Channu, V. S. Reddy
    Ravichandran, D.
    Rambabu, B.
    Holze, Rudolf
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 453 : 125 - 131
  • [28] Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi0.6Mn0.2Co0.2O2
    Zeng, Xiaoqiao
    Xu, Gui-Liang
    Li, Yan
    Luo, Xiangyi
    Maglia, Filippo
    Bauer, Christoph
    Lux, Simon Franz
    Paschos, Odysseas
    Kim, Sung-Jin
    Lamp, Peter
    Lu, Jun
    Amine, Khalil
    Chen, Zonghai
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (05) : 3446 - 3451
  • [29] Roll-to-roll manufacturing method of aqueous-processed thick LiNi0.5Mn0.3Co0.2O2 electrodes for lithium-ion batteries
    Demiryurek, Ridvan
    Gurbuz, Nergiz
    Hatipoglu, Gizem
    Er, Mesut
    Malkoc, Hasan
    Guleryuz, Ozkan
    Uyar, Gulsen
    Uzun, Davut
    Ates, Mehmet Nurullah
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (15) : 21182 - 21194
  • [30] Slight Overcharge Aging Behaviors and Thermal Runaway Characteristics of Li(Ni0.5Co0.2Mn0.3)O2/Graphite Batteries at Different Ambient Temperatures
    Liu, Yuemeng
    Mao, Guanrong
    Yang, Meng
    Jiang, Jiajia
    Jiang, Juncheng
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (12) : 6760 - 6772