Stereollax Net: Stereo Parallax-Based Deep Learning Network for Building Height Estimation

被引:0
作者
Jabbar, Sana [1 ]
Taj, Murtaza [1 ]
机构
[1] Lahore Univ Management Sci, Syed Babar Ali Sch Sci & Engn, Dept Comp Sci, Lahore 54792, Pakistan
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Buildings; Estimation; Optical imaging; Optical sensors; Decoding; Urban areas; Satellites; Autoencoder; building height; fully connected network (FCN); optical imagery; stereo parallax; EXTRACTION; LIDAR;
D O I
10.1109/TGRS.2024.3387476
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurate estimation of building heights is crucial foreffective urban planning and resource management as it providesessential geometric information about the urban landscape. Manyend-to-end deep learning-based networks have been proposedfor image-to-height mapping using high-resolution nonopticaland optical remote sensing imagery. In this study, we developa novel deep-learning architecture that incorporates a stereoparallax-based mathematical formulation for building heightestimation. We estimate stereo formulation parameters includedifferential parallax (1P) image, average photo-base (b), andsatellite height (hs). The final height map is computed byutilizing these parameters in the stereo parallax equation, thuscombining closed-form solutions within the learning paradigm.Moreover, to improve the estimation of1P, we also introduce amultiscale differential shortcut connection (MSDSC) module. TheMSDSC module integrates high-frequency components into lowerresolution baseline decoder features while converting them intohigh-resolution decoder features. To establish the efficacy of ourproposed stereo parallax-based deep learning network (StereollaxNet), we train and evaluate our method on densely populatedcities of China (42-Cities dataset) and on the IEEE Data FusionContest 2018 (DFC2018) dataset. Our proposed Stereollax Netis trained only with RGB imagery and compared with thestate-of-the-art (SOTA) methods that utilize both panchromaticand multispectral (RGB and near-infrared) satellite imagery.The qualitative and quantitative results demonstrate that ourStereollax Net surpasses existing SOTA algorithms, achievingsuperior performance with fewer data and training parametersby a considerable margin. The code will be made publiclyavailable via the GitHub repository
引用
收藏
页码:1 / 12
页数:12
相关论文
共 60 条
[1]  
Alobeid A., 2009, In: ISPRS Hannover Workshop, V38
[2]  
[Anonymous], 2021, statisticstimes27 Sep
[3]  
[Anonymous], 2014, Stereoscopic Parallax
[4]  
Aravinth J, 2018, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), P397, DOI 10.1109/CESYS.2018.8724044
[5]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[6]   Deep learning-based building height mapping using Sentinel-1 and Sentinel-2 data [J].
Cai, Bowen ;
Shao, Zhenfeng ;
Huang, Xiao ;
Zhou, Xuechao ;
Fang, Shenghui .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
[7]   A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities [J].
Cao, Yinxia ;
Huang, Xin .
REMOTE SENSING OF ENVIRONMENT, 2021, 264
[8]   Multitask Learning of Height and Semantics From Aerial Images [J].
Carvalho, Marcela ;
Le Saux, Bertrand ;
Trouve-Peloux, Pauline ;
Champagnat, Frederic ;
Almansa, Andres .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) :1391-1395
[9]   UVLens: Urban Village Boundary Identification and Population Estimation Leveraging Open Government Data [J].
Chen, Longbiao ;
Lu, Chenhui ;
Yuan, Fangxu ;
Jiang, Zhihan ;
Wang, Leye ;
Zhang, Daqing ;
Luo, Ruixiang ;
Fan, Xiaoliang ;
Wang, Cheng .
PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2021, 5 (02)
[10]   ADAPTIVE BINS FOR MONOCULAR HEIGHT ESTIMATION FROM SINGLE REMOTE SENSING IMAGES [J].
Chen, Sining ;
Shi, Yilei ;
Xiong, Zhitong ;
Zhu, Xiao Xiang .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :7015-7018