Fuzzy Time Series Forecasting on the Example of the Dow Jones Index Dynamics

被引:0
作者
Rzayev, Ramin [1 ]
Alizada, Parvin [2 ]
Mehdiyev, Tahir [1 ]
机构
[1] Inst Control Syst ANAS, Vahabzadeh Str 9, AZ-1141 Baku, Azerbaijan
[2] Baku State Univ, Khalilov Str 23, AZ-1148 Baku, Azerbaijan
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, INTELLISYS 2023 | 2024年 / 822卷
关键词
Dow Jones Industrial Average; Fuzzy time series; Fuzzy Inference;
D O I
10.1007/978-3-031-47721-8_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper discusses a new predictive model of a fuzzy volatile time series, in the framework of which a new approach to the fuzzification of historical data is proposed as the results of observations based on "soft measurements" of the states of a dynamic system over a certain period of time. As an example, the Dow Jones index was chosen, the readings of which are set based on the results of daily trading on the US stock exchange by the usual arithmetic averaging of contextual indicators. This allows to consider the daily readings of the Dow Jones index as weakly structured, and to interpret the dynamics of its change as a fuzzy time series. The fuzzification procedure is implemented by the fuzzy inference system that provides the values of the membership functions of the corresponding fuzzy subsets of the discrete universe covering the set of index indicators for the period from June 15, 2018 to October 10, 2019. The proposed predictive model is based on the identified internal relationships, designed as first-order fuzzy relations between evaluation criteria or fuzzy sets that describe weakly structuredDowJones indexes. At the end of the study, the proposed model is evaluated for adequacy using the statistical criteria MAPE, MPE and MSE.
引用
收藏
页码:102 / 128
页数:27
相关论文
共 50 条
  • [31] Fuzzy time series for real-time flood forecasting
    Chen, Chang-Shian
    Jhong, You-Da
    Wu, Wan-Zhen
    Chen, Shien-Tsung
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (03) : 645 - 656
  • [32] Fuzzy time series forecasting method based on hesitant fuzzy sets
    Bisht, Kamlesh
    Kumar, Sanjay
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 64 : 557 - 568
  • [33] Intuitionistic Fuzzy Sets Based Method for Fuzzy Time Series Forecasting
    Joshi, Bhagawati P.
    Kumar, Sanjay
    CYBERNETICS AND SYSTEMS, 2012, 43 (01) : 34 - 47
  • [34] TAIEX Forecasting Based on Fuzzy Time Series and Fuzzy Variation Groups
    Chen, Shyi-Ming
    Chen, Chao-Dian
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (01) : 1 - 12
  • [35] AN ENHANCED DETERMINISTIC FUZZY TIME SERIES FORECASTING MODEL
    Li, Sheng-Tun
    Cheng, Yi-Chung
    CYBERNETICS AND SYSTEMS, 2009, 40 (03) : 211 - 235
  • [36] Analysis of Fuzzy Time Series Forecasting for Migration Flows
    Uzhga-Rebrov, Oleg
    Grabusts, Peter
    SYMMETRY-BASEL, 2022, 14 (07):
  • [37] Forecasting local region data with fuzzy time series
    Tsai, CC
    Wu, SJ
    ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, : 122 - 133
  • [38] Electricity Consumption Forecasting Using Fuzzy Time Series
    Bolturk, E.
    Oztaysi, B.
    Sari, I. U.
    13TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI 2012), 2012, : 245 - 249
  • [39] A fuzzy time series forecasting method induced by intuitionistic fuzzy sets
    Kumar, Sanjay
    Gangwar, Sukhdev Singh
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (04)
  • [40] A multiset based forecasting model for fuzzy time series
    Vamitha, V.
    Rajaram, S.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (04): : 965 - 973