CLOSED-FORM SOLUTIONS FOR A REACTION-DIFFUSION SIR MODEL WITH DIFFERENT DIFFUSION COEFFICIENTS

被引:2
|
作者
Naz, Rehana [1 ]
Johnpillai, Andrew gratien [2 ]
Mahomed, Fazal mahmood [3 ]
Omame, Andrew [4 ]
机构
[1] Lahore Sch Econ, Dept Math & Stat Sci, Lahore 53200, Pakistan
[2] Eastern Univ, Dept Math, Chenkaladi 30350, Sri Lanka
[3] Univ Witwatersrand, DDSI NRF Ctr Excellence Math & Stat Sci, ZA-2050 Johannesburg, South Africa
[4] Fed Univ Technol Owerri, Dept Math, Owerri, Nigeria
关键词
Reaction-diffusion SIR epidemic model; symmetry approach; EPIDEMIC MODEL; 1ST INTEGRALS; CONSERVATION-LAWS; SYMBOLIC SOFTWARE; SYMMETRY; SYSTEMS; PACKAGE;
D O I
10.3934/dcdss.2024103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Lie point symmetries to obtain reductions and closed-form solutions for the reaction-diffusion SIR epidemic model. We determine that the Lie algebra for this model is three-dimensional. By invoking these Lie symmetries, we establish closed-form solutions for the reaction-diffusion SIR model. We employ the appropriate initial and boundary conditions to relate the derived closed-form solution to a real-world scenario. Furthermore, we utilize the closed-form solutions to generate a graphical representation of the densities of susceptible, infected, and removed individuals. We also perform a sensitivity analysis of the density of infected individuals to gain valuable insights into the transmission dynamics of the infectious disease.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [41] Some remarks on spatial uniformity of solutions of reaction-diffusion PDEs
    Aminzare, Zahra
    Sontag, Eduardo D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 125 - 144
  • [42] Stationary periodic and homoclinic solutions for nonlocal reaction-diffusion equations
    Ai, Shangbing
    APPLICABLE ANALYSIS, 2010, 89 (07) : 963 - 981
  • [43] Traveling wave solutions to a reaction-diffusion system arising in epidemiology
    Djebali, S
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2001, 2 (04) : 417 - 442
  • [44] Traveling Wavefront Solutions for Reaction-Diffusion Equation with Small Delay
    Zhao, Zhihong
    Ge, Weigao
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2011, 54 (02): : 225 - 236
  • [45] Conditional symmetries and exact solutions of a nonlinear three-component reaction-diffusion model
    Cherniha, R. M.
    Davydovych, V. V.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (02) : 280 - 300
  • [46] Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model
    Zhao, Hongyong
    Zhu, Linhe
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (06):
  • [47] Wave features of a hyperbolic reaction-diffusion model for Chemotaxis
    Barbera, Elvira
    Valenti, Giovanna
    WAVE MOTION, 2018, 78 : 116 - 131
  • [48] Spatial Dynamics of A Reaction-Diffusion Model with Distributed Delay
    Zhang, Y.
    Zhao, X. -Q.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (03) : 60 - 77
  • [49] Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay
    Omrana, A. K.
    Zaky, M. A.
    Hendy, A. S.
    Pimenova, V. G.
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 295 - 310
  • [50] Asymptotic stability of an epidemiological fractional reaction-diffusion model
    Djebara, Lamia
    Abdelmalek, Salem
    Bendoukha, Samir
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)