CLOSED-FORM SOLUTIONS FOR A REACTION-DIFFUSION SIR MODEL WITH DIFFERENT DIFFUSION COEFFICIENTS

被引:2
|
作者
Naz, Rehana [1 ]
Johnpillai, Andrew gratien [2 ]
Mahomed, Fazal mahmood [3 ]
Omame, Andrew [4 ]
机构
[1] Lahore Sch Econ, Dept Math & Stat Sci, Lahore 53200, Pakistan
[2] Eastern Univ, Dept Math, Chenkaladi 30350, Sri Lanka
[3] Univ Witwatersrand, DDSI NRF Ctr Excellence Math & Stat Sci, ZA-2050 Johannesburg, South Africa
[4] Fed Univ Technol Owerri, Dept Math, Owerri, Nigeria
关键词
Reaction-diffusion SIR epidemic model; symmetry approach; EPIDEMIC MODEL; 1ST INTEGRALS; CONSERVATION-LAWS; SYMBOLIC SOFTWARE; SYMMETRY; SYSTEMS; PACKAGE;
D O I
10.3934/dcdss.2024103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Lie point symmetries to obtain reductions and closed-form solutions for the reaction-diffusion SIR epidemic model. We determine that the Lie algebra for this model is three-dimensional. By invoking these Lie symmetries, we establish closed-form solutions for the reaction-diffusion SIR model. We employ the appropriate initial and boundary conditions to relate the derived closed-form solution to a real-world scenario. Furthermore, we utilize the closed-form solutions to generate a graphical representation of the densities of susceptible, infected, and removed individuals. We also perform a sensitivity analysis of the density of infected individuals to gain valuable insights into the transmission dynamics of the infectious disease.
引用
收藏
页码:870 / 881
页数:12
相关论文
共 50 条
  • [31] Bifurcation analysis of reaction-diffusion Schnakenberg model
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    Feng, Xiuhong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 2001 - 2019
  • [32] DYNAMICS OF SOLUTIONS OF A REACTION-DIFFUSION EQUATION WITH DELAYED INHIBITION
    Touaoula, Tarik Mohammed
    Frioui, Mohammed Nor
    Bessonov, Nikolay
    Volpert, Vitaly
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (09): : 2425 - 2442
  • [33] Turing patterns in a reaction-diffusion epidemic model
    Jia, Yanfei
    Cai, Yongli
    Shi, Hongbo
    Fu, Shengmao
    Wang, Weiming
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (02)
  • [34] THE CLOSED-FORM SOLUTIONS OF A DIFFUSIVE SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE EPIDEMIC MODEL
    Naz, Rehana
    Wang, Gangwei
    Irum, Saba
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01): : 574 - 586
  • [35] FRACTIONAL DIFFERENTIAL EQUATIONS OF A REACTION-DIFFUSION SIR MODEL INVOLVING THE CAPUTO-FRACTIONAL TIME-DERIVATIVE AND A NONLINEAR DIFFUSION OPERATOR
    Zinihi, Achraf
    Ammi, Moulay rchid sidi
    Torres, Delfim f. m.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025,
  • [36] The diffusion identification in a SIS reaction-diffusion system
    Coronel, Anibal
    Huancas, Fernando
    Hess, Ian
    Tello, Alex
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 562 - 581
  • [37] Lie Symmetries and Solutions for a Reaction-Diffusion-Advection SIS Model with Demographic Effects
    Naz, Rehana
    Torrisi, Mariano
    Imran, Ayesha
    SYMMETRY-BASEL, 2025, 17 (01):
  • [38] Generalized result on the global existence of positive solutions for a parabolic reaction-diffusion model with an m x m diffusion matrix
    Barrouk, Nabila
    Abdelmalek, Karima
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [39] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction-diffusion model
    Yang, Rui
    NONLINEAR DYNAMICS, 2022, 110 (02) : 1753 - 1766
  • [40] Global attractivity for reaction-diffusion equations with periodic coefficients and time delays
    Ruiz-Herrera, Alfonso
    Touaoula, Tarik Mohammed
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):