Machine learning and artificial intelligence within pediatric autoimmune diseases: applications, challenges, future perspective

被引:3
作者
Sadeghi, Parniyan [1 ,2 ]
Karimi, Hanie [1 ,3 ]
Lavafian, Atiye [1 ,4 ]
Rashedi, Ronak [1 ,5 ]
Samieefar, Noosha [1 ,5 ]
Shafiekhani, Sajad [6 ]
Rezaei, Nima [1 ,7 ,8 ,9 ]
机构
[1] Universal Sci Educ & Res Network USERN, Network Interdisciplinar Neonates & Infants NINI, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Student Res Comm, Tehran, Iran
[3] Univ Tehran Med Sci, Sch Med, Tehran, Iran
[4] Semnan Univ Med Sci, Sch Med, Semnan, Iran
[5] Shahid Beheshti Univ Med Sci, USERN Off, Tehran, Iran
[6] Buein Zahra Tech Univ, Dept Biomed Engn, Qazvin, Iran
[7] Univ Tehran Med Sci, Childrens Med Ctr, Res Ctr Immunodeficiencies, Tehran, Iran
[8] Univ Tehran Med Sci, Sch Med, Dept Immunol, Tehran, Iran
[9] Childrens Med Ctr Hosp, Res Ctr Immunodeficiencies, Dr Qarib St,Keshavarz Blvd, Tehran 14194, Iran
关键词
Autoimmune diseases; machine learning; artificial intelligence; pediatrics; INFLAMMATORY-BOWEL-DISEASE; RHEUMATIC HEART-DISEASE; KAWASAKI-DISEASE; LOGISTIC-REGRESSION; COMPONENT ANALYSIS; CLASSIFICATION; CHILDREN; DIAGNOSIS; EPIDEMIOLOGY; PREVALENCE;
D O I
10.1080/1744666X.2024.2359019
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
IntroductionAutoimmune disorders affect 4.5% to 9.4% of children, significantly reducing their quality of life. The diagnosis and prognosis of autoimmune diseases are uncertain because of the variety of onset and development. Machine learning can identify clinically relevant patterns from vast amounts of data. Hence, its introduction has been beneficial in the diagnosis and management of patients.Areas coveredThis narrative review was conducted through searching various electronic databases, including PubMed, Scopus, and Web of Science. This study thoroughly explores the current knowledge and identifies the remaining gaps in the applications of machine learning specifically in the context of pediatric autoimmune and related diseases.Expert opinionMachine learning algorithms have the potential to completely change how pediatric autoimmune disorders are identified, treated, and managed. Machine learning can assist physicians in making more precise and fast judgments, identifying new biomarkers and therapeutic targets, and personalizing treatment strategies for each patient by utilizing massive datasets and powerful analytics.
引用
收藏
页码:1219 / 1236
页数:18
相关论文
共 189 条
[1]   A Comparison of Regression Models for Prediction of Graduate Admissions [J].
Acharya, Mohan S. ;
Armaan, Asfia ;
Antony, Aneeta S. .
2019 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS 2019), 2019,
[2]   Machine-Learning-Based Disease Diagnosis: A Comprehensive Review [J].
Ahsan, Md Manjurul ;
Luna, Shahana Akter ;
Siddique, Zahed .
HEALTHCARE, 2022, 10 (03)
[3]   Predicting the development of T1D and identifying its Key Performance Indicators in children; a case-control study in Saudi Arabia [J].
Alazwari, Ahood ;
Johnstone, Alice ;
Tafakori, Laleh ;
Abdollahian, Mali ;
AlEidan, Ahmed M. M. ;
Alfuhigi, Khalid ;
Alghofialy, Mazen M. M. ;
Albunyan, Abdulhameed A. A. ;
Al Abbad, Hawra ;
AlEssa, Maryam H. H. ;
Alareefy, Abdulaziz K. H. ;
Alshamrani, Mohammad A. A. .
PLOS ONE, 2023, 18 (03)
[4]   When COVID-19 enters in a community setting: an exploratory qualitative study of community perspectives on COVID-19 affecting mental well-being [J].
Ali, Naureen Akber ;
Feroz, Anam Shahil ;
Akber, Noshaba ;
Feroz, Ridah ;
Meghani, Salima Nazim ;
Saleem, Sarah .
BMJ OPEN, 2021, 11 (05)
[5]  
Alloghani M., 2020, Supervised and unsupervised learning for data science, P3, DOI [10.1007/978-3-030-22475-21, 10.1007/978-3-030-22475-2_1, DOI 10.1007/978-3-030-22475-2_1, 10.1007/978-3-030-22475-2]
[6]  
Almasre MA, 2017, COMPUTERS, V6, DOI 10.3390/computers6020020
[7]  
Alroughani R, 2018, BMC NEUROL, V18, DOI [10.7224/1537-2073-20.s3.1, 10.1186/s12883-018-1026-3]
[8]  
Ardigo S, 2008, Rev Med Suisse, V4, P1376
[9]   Rheumatic Fever and Rheumatic Heart Disease in Children [J].
Arvind, Balaji ;
Ramakrishnan, Sivasubramanian .
INDIAN JOURNAL OF PEDIATRICS, 2020, 87 (04) :305-311
[10]   Rheumatic Heart Disease Screening Based on Phonocardiogram [J].
Asmare, Melkamu Hunegnaw ;
Filtjens, Benjamin ;
Woldehanna, Frehiwot ;
Janssens, Luc ;
Vanrumste, Bart .
SENSORS, 2021, 21 (19)