Kinetic calculation of the resistive wall mode and fishbone-like mode instability in tokamak

被引:11
|
作者
Hao, G. Z. [1 ,2 ]
Yang, S. X. [3 ]
Liu, Y. Q. [2 ,4 ]
Wang, Z. X. [3 ]
Wang, A. K. [2 ]
He, H. D. [2 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
[2] Southwestern Inst Phys, POB 432, Chengdu 610041, Peoples R China
[3] Dalian Univ Technol, Sch Phys & Optoelect Technol, Key Lab Mat Modificat Beams, Minist Educ, Dalian 116024, Peoples R China
[4] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
STABILIZATION; STABILITY;
D O I
10.1063/1.4953100
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Kinetic effects of both trapped thermal and energetic particles on the resistive wall mode (RWM) and on the fishbone-like mode (FLM) are investigated in theory. Here, the trapped thermal particles include both ions and electrons. The FLM is driven by trapped energetic particles. The results demonstrate that thermal particle collisions can either stabilize or destabilize the RWM, depending on the energetic particle pressure beta(h). Furthermore, the critical value of bh for triggering the FLM is increased when the thermal particle contribution is taken into account. The critical value sensitively depends on the plasma collision frequency. In addition, the plasma inertia is found to have a negligible influence on the FLM. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Investigation of multiple roots of the resistive wall mode dispersion relation, including kinetic effects
    Berkery, J. W.
    Betti, R.
    Sabbagh, S. A.
    PHYSICS OF PLASMAS, 2011, 18 (07)
  • [32] Bifurcation of resistive wall mode dynamics predicted by magnetohydrodynamic-kinetic hybrid theory
    Yang, S. X.
    Wang, S.
    Liu, Y. Q.
    Hao, G. Z.
    Wang, Z. X.
    Song, X. M.
    Wang, A. K.
    PHYSICS OF PLASMAS, 2015, 22 (09)
  • [33] A rigorous approach to study kinetic and 3D effects on resistive wall mode
    Liu, Yueqiang
    Villone, F.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (11)
  • [34] MST resistive wall tearing mode simulations
    Strauss, H. R.
    Chapman, B. E.
    Hurst, N. C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (08)
  • [35] Requirements for active resistive wall mode (RWM) feedback control
    In, Y.
    Chu, M. S.
    Jackson, G. L.
    Kim, J. S.
    La Haye, R. J.
    Liu, Y. Q.
    Marrelli, L.
    Okabayashi, M.
    Reimerdes, H.
    Strait, E. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (10)
  • [36] Resistive wall mode in cylindrical plasmas in the presence of surface currents
    Cui, Shaoyan
    Lu, Gaimin
    Iu, Yue L.
    JOURNAL OF PLASMA PHYSICS, 2012, 78 : 501 - 506
  • [37] Evidence for the Importance of Trapped Particle Resonances for Resistive Wall Mode Stability in High Beta Tokamak Plasmas
    Reimerdes, H.
    Berkery, J. W.
    Lanctot, M. J.
    Garofalo, A. M.
    Hanson, J. M.
    In, Y.
    Okabayashi, M.
    Sabbagh, S. A.
    Strait, E. J.
    PHYSICAL REVIEW LETTERS, 2011, 106 (21)
  • [38] Transition from fishbone mode to β-induced Alfven eigenmode on HL-2A tokamak
    Zou, Zhihui
    Zhu, Ping
    Kim, Charlson C.
    Wang, Xianqu
    Hou, Yawei
    PLASMA SCIENCE & TECHNOLOGY, 2021, 23 (09)
  • [39] The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stabilitya)
    Berkery, J. W.
    Sabbagh, S. A.
    Reimerdes, H.
    Betti, R.
    Hu, B.
    Bell, R. E.
    Gerhardt, S. P.
    Manickam, J.
    Podesta, M.
    PHYSICS OF PLASMAS, 2010, 17 (08)
  • [40] Kinetic versus ideal magnetohydrodynamic modelling of the resistive wall mode in a reversed field pinch plasma
    Mulec, M.
    Ivanov, I. B.
    Heyn, M. F.
    Kernbichler, W.
    PHYSICS OF PLASMAS, 2012, 19 (03)