Magneto-thermal-switching in type-I and type-II superconductors

被引:4
作者
Yoshida, M. [1 ]
Arima, H. [1 ,2 ]
Watanabe, Y. [1 ]
Yamashita, A. [1 ]
Mizuguchi, Y.
机构
[1] Tokyo Metropolitan Univ, Dept Phys, 1-1 Minami Osawa, Hachioji 1920397, Japan
[2] Natl Inst Adv Ind Sci & Technol, 1-1-1 Umezono, Tsukuba, Ibaraki 3058563, Japan
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2024年 / 623卷
关键词
Thermal conductivity; Magneto-thermal switching; Superconducting transition; Type-I; Type-II; CONDUCTIVITY;
D O I
10.1016/j.physc.2024.1354536
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermal switching by applying magnetic field is one of the key technologies in thermal management in electronic devices. In low-temperature devices, superconductors can be used as a magneto-thermal-switching (MTS) materials due to the large change in carrier thermal conductivity by the superconducting transition. In this study, we measured the temperature ( T ) and magnetic field ( H ) dependences of thermal conductivity ( kappa ) of Sn, Ta and V to enrich knowledge on MTS of type-I and type-II superconductors. From the data analyses, we found different trends of kappa - H curves in type-I and type-II superconductors. The normalized kappa - H curves of type-I superconductors showed the similar behavior, which is solely governed by H c . However, the kappa - H curves of type-II superconductors were affected by the H c1 and H c2 , and its behavior greatly depends on the materials. In addition, we investigated the elemental composition of Sn and Ta to explore the origin of weak hysteresis in the kappa - H curves and revealed the importance of impurity on the hysteresis of kappa - H curves.
引用
收藏
页数:4
相关论文
共 24 条
[11]   Transforming heat transfer with thermal metamaterials and devices [J].
Li, Ying ;
Li, Wei ;
Han, Tiancheng ;
Zheng, Xu ;
Li, Jiaxin ;
Li, Baowen ;
Fan, Shanhui ;
Qiu, Cheng-Wei .
NATURE REVIEWS MATERIALS, 2021, 6 (06) :488-507
[12]  
Lowell J., 1970, Journal of Low Temperature Physics, V3, P65, DOI 10.1007/BF00628399
[13]  
Matsumura R., 2016, IEEE Trans. Appl. Supercond, V26
[14]   Above-room-temperature giant thermal conductivity switching in spintronic multilayers [J].
Nakayama, Hiroyasu ;
Xu, Bin ;
Iwamoto, Sotaro ;
Yamamoto, Kaoru ;
Iguchi, Ryo ;
Miura, Asuka ;
Hirai, Takamasa ;
Miura, Yoshio ;
Sakuraba, Yuya ;
Shiomi, Junichiro ;
Uchida, Ken-ichi .
APPLIED PHYSICS LETTERS, 2021, 118 (04)
[15]   Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2 [J].
Oh, Dong-Wook ;
Ko, Changhyun ;
Ramanathan, Shriram ;
Cahill, David G. .
APPLIED PHYSICS LETTERS, 2010, 96 (15)
[16]   Temperature dependence and anisotropy of the bulk upper critical field Hc2 of MgB2 -: art. no. 180505 [J].
Sologubenko, AV ;
Jun, J ;
Kazakov, SM ;
Karpinski, J ;
Ott, HR .
PHYSICAL REVIEW B, 2002, 65 (18) :1-4
[17]   An electrochemical thermal transistor [J].
Sood, Aditya ;
Xiong, Feng ;
Chen, Shunda ;
Wang, Haotian ;
Selli, Daniele ;
Zhang, Jinsong ;
McClellan, Connor J. ;
Sun, Jie ;
Donadio, Davide ;
Cui, Yi ;
Pop, Eric ;
Goodson, Kenneth E. .
NATURE COMMUNICATIONS, 2018, 9
[18]   Dynamic control of heat flow using a spin-chain ladder cuprate film and an ionic liquid [J].
Terakado, Nobuaki ;
Nara, Yoshinori ;
Machida, Yuki ;
Takahashi, Yoshihiro ;
Fujiwara, Takumi .
SCIENTIFIC REPORTS, 2020, 10 (01)
[19]   THERMAL-CONDUCTIVITY OF HIGH-TC SUPERCONDUCTORS [J].
UHER, C .
JOURNAL OF SUPERCONDUCTIVITY, 1990, 3 (04) :337-389
[20]   STUDY OF SUPERCOOLING AND THERMAL CONDUCTIVITY IN SUPERCONDUCTING MOLYBDENUM [J].
WALEH, A ;
ZEBOUNI, NH .
PHYSICAL REVIEW B, 1971, 4 (09) :2977-&