Optimizing the design of birefringent metasurfaces with deep learning neural networks

被引:0
|
作者
Xu, Athena [1 ]
Semnani, Behrooz [1 ]
Houk, Anna Maria [1 ]
Soltani, Mohammad [1 ]
Treacy, Jacqueline [1 ]
Bajcsy, Michal [1 ]
机构
[1] Univ Waterloo, IQC, Waterloo, ON, Canada
来源
PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES XIV | 2024年 / 12896卷
关键词
Metasurface; Deep Learning; Inverse Design; Artificial Neural Networks; Nanophotonics;
D O I
10.1117/12.3000591
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metasurface presents itself as a method to create flat optical devices that generate customizable wavefronts at the nanoscale. The traditional metasurface design process involves solving Maxwell's equations through forward simulations and implementing trial-and-error to achieve the desired spectral response. This approach is computationally expensive and typically requires multiple iterations. In this study, we propose a reverse engineering solution that utilizes a deep learning artificial neural network (DNN). The ideal phase and transmission spectrums are inputted into the neural network, and the predicted dimensions which correspond to these spectrums are outputted by the network. The prediction process is less computationally expensive than forward simulations and is orders of magnitude faster to execute. Our neural network aims to identify the dimensions of elliptical nanopillars that will create the ideal phase response with a near unity transmission in a 20 nm wavelength interval surrounding the center wavelength of the spectral response. We have trained such a reverse DNN to predict the optimal dimensions for a birefringent metasurface composed of elliptical nanopillars.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    NEURAL NETWORKS, 2015, 61 : 85 - 117
  • [22] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [23] Deep relaxation: partial differential equations for optimizing deep neural networks
    Chaudhari, Pratik
    Oberman, Adam
    Osher, Stanley
    Soatto, Stefano
    Carlier, Guillaume
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2018, 5 : 1 - 30
  • [24] Evolutionary Design of Deep Neural Networks
    Radu, Petru
    2019 21ST INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2019), 2020, : 335 - 336
  • [25] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 450 - 462
  • [26] Predicting Laser-Induced Colors of Random Plasmonic Metasurfaces and Optimizing Image Multiplexing Using Deep Learning
    Ma, Hongfeng
    Dalloz, Nicolas
    Habrard, Amaury
    Sebban, Marc
    Sterl, Florian
    Giessen, Harald
    Hebert, Mathieu
    Destouches, Nathalie
    ACS NANO, 2022, 16 (06) : 9410 - 9419
  • [27] Design Index for Deep Neural Networks
    Date, Prasanna
    Hendler, James A.
    Carothers, Christopher D.
    7TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, (BICA 2016), 2016, 88 : 131 - 138
  • [28] Physics-Based Approach for a Neural Networks Enabled Design of All-Dielectric Metasurfaces
    Tanriover, Ibrahim
    Hadibrata, Wisnu
    Aydin, Koray
    ACS PHOTONICS, 2020, 7 (08) : 1957 - 1964
  • [29] Artificial Neural Networks and Deep Learning in the Visual Arts: a review
    Iria Santos
    Luz Castro
    Nereida Rodriguez-Fernandez
    Álvaro Torrente-Patiño
    Adrián Carballal
    Neural Computing and Applications, 2021, 33 : 121 - 157
  • [30] Artificial Neural Networks and Deep Learning in the Visual Arts: a review
    Santos, Iria
    Castro, Luz
    Rodriguez-Fernandez, Nereida
    Torrente-Patino, Alvaro
    Carballal, Adrian
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (01) : 121 - 157