Convergence rate toward shock wave under periodic perturbation for generalized Korteweg-de Vries-Burgers equation

被引:0
作者
Chang, Lin [1 ]
机构
[1] Handan Univ, Sch Math & Phys, Handan, Peoples R China
关键词
Korteweg-de Vries-Burgers equation; Time decay rate; Viscous shock wave; Periodic perturbations; Space-time weighted energy method; ASYMPTOTIC STABILITY; RAREFACTION WAVES; HYPERBOLIC SYSTEMS; TRAVELING-WAVES; CONSERVATION;
D O I
10.1016/j.nonrwa.2024.104170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a viscous shock wave under space -periodic perturbation of generalized Korteweg- de Vries-Burgers equation is investigated. It is shown that if the initial periodic perturbation around the viscous shock wave is small, then the solution time asymptotically tends to a viscous shock wave with a shift partially determined by the periodic oscillations. Moreover the exponential time decay rate toward the viscous shock wave is also obtained for some certain perturbations.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Well-posedness of Korteweg-de Vries-Burgers equation on a finite domain
    Jie Li
    Kangsheng Liu
    [J]. Indian Journal of Pure and Applied Mathematics, 2017, 48 : 91 - 116
  • [22] Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay
    Kang, Wen
    Fridman, Emilia
    [J]. AUTOMATICA, 2019, 100 : 260 - 273
  • [23] Boundary-value problem for the Korteweg-de Vries-Burgers type equation
    Hayashi, N
    Kaikina, EI
    Paredes, HFR
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (04): : 439 - 463
  • [24] Disturbance rejection approaches of Korteweg-de Vries-Burgers equation under event-triggering mechanism☆
    Kang, Wen
    Zhang, Jing
    Wang, Jun-Min
    [J]. AUTOMATICA, 2024, 169
  • [25] Painleve analysis and exact solutions of two dimensional Korteweg-de Vries-Burgers equation
    Joy, MP
    [J]. PRAMANA-JOURNAL OF PHYSICS, 1996, 46 (01): : 1 - 8
  • [26] Bang–Bang Property for Time Optimal Control of the Korteweg-de Vries-Burgers Equation
    Mo Chen
    [J]. Applied Mathematics & Optimization, 2017, 76 : 399 - 414
  • [27] Inverse source problems for the Korteweg-de Vries-Burgers equation with mixed boundary conditions
    Montoya, Cristhian
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (06): : 777 - 794
  • [28] Boundary feedback stabilization of the Korteweg-de Vries-Burgers equation posed on a finite interval
    Jia, Chaohua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (01) : 624 - 647
  • [29] INVERSE OPTIMAL DYNAMIC BOUNDARY CONTROL FOR UNCERTAIN KORTEWEG-DE VRIES-BURGERS EQUATION
    Cai, Xiushan
    Lin, Yuhang
    Lin, Cong
    Liu, Leipo
    [J]. KYBERNETIKA, 2024, 60 (06) : 797 - 818
  • [30] Korteweg-de Vries-Burgers equation on a half-line with large initial data
    Hayashi, N
    Kaikina, EI
    Paredes, HFR
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (03) : 319 - 347