Convergence rate toward shock wave under periodic perturbation for generalized Korteweg-de Vries-Burgers equation

被引:0
|
作者
Chang, Lin [1 ]
机构
[1] Handan Univ, Sch Math & Phys, Handan, Peoples R China
关键词
Korteweg-de Vries-Burgers equation; Time decay rate; Viscous shock wave; Periodic perturbations; Space-time weighted energy method; ASYMPTOTIC STABILITY; RAREFACTION WAVES; HYPERBOLIC SYSTEMS; TRAVELING-WAVES; CONSERVATION;
D O I
10.1016/j.nonrwa.2024.104170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a viscous shock wave under space -periodic perturbation of generalized Korteweg- de Vries-Burgers equation is investigated. It is shown that if the initial periodic perturbation around the viscous shock wave is small, then the solution time asymptotically tends to a viscous shock wave with a shift partially determined by the periodic oscillations. Moreover the exponential time decay rate toward the viscous shock wave is also obtained for some certain perturbations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [2] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [3] Examples of the absence of a traveling wave for the generalized Korteweg-de Vries-Burgers equation
    Kazeykina A.V.
    Moscow University Computational Mathematics and Cybernetics, 2011, 35 (1) : 14 - 21
  • [4] Convergence rate of solutions toward traveling waves for the Cauchy problem of generalized Korteweg-de Vries-Burgers equations
    Yin, Hui
    Zhao, Huijiang
    Zhou, Lina
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 3981 - 3991
  • [5] Asymptotics for the Korteweg-de Vries-Burgers Equation
    Nakao HAYASHI
    Pavel I.NAUMKIN
    ActaMathematicaSinica(EnglishSeries), 2006, 22 (05) : 1441 - 1456
  • [6] Asymptotics for the Korteweg-de Vries-Burgers equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) : 1441 - 1456
  • [7] CONTROLLABILITY OF THE KORTEWEG-DE VRIES-BURGERS EQUATION
    Zhou, Hang
    Han, Yuecai
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 207 - 215
  • [8] Solitary waves of the Korteweg-de Vries-Burgers' equation
    Zaki, SI
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 126 (03) : 207 - 218
  • [9] Inverse Optimal Control of Korteweg-de Vries-Burgers Equation
    Cai, Xiushan
    Lin, Yuhang
    Zhan, Xisheng
    Wan, Liguang
    Liu, Leibo
    Lin, Cong
    IFAC PAPERSONLINE, 2023, 56 (02): : 1351 - 1356
  • [10] The Korteweg-de Vries-Burgers equation and its approximate solution
    Wang, Xiaohui
    Feng, Zhaosheng
    Debnath, Lokenath
    Gao, David Y.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (06) : 853 - 863