Short-term wind speed forecast based on dynamic spatio-temporal directed graph attention network

被引:0
|
作者
Cai, Yizhuo [1 ]
Li, Yanting [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Ind Engn & Management, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Short-term wind speed forecast; Spatio-temporal features; Dynamic directed graph; Long- and short-term patterns; WAVELET TRANSFORM;
D O I
10.1016/j.apenergy.2024.124124
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The accurate prediction of wind speed is crucial for the advancement of the wind power industry. This study introduces a new wind speed forecasting model called the Dynamic Spatio-temporal Directed Graph Attention Network (DSTDGAT), which aims to enhance prediction accuracy by capturing the time-varying and asymmetric spatio-temporal correlations among turbines. To address changing weather conditions, the model decomposes association patterns into bidirectional long-term and unidirectional short-term patterns. A dynamic directed graph learning module is designed to optimize adjacency matrices, followed by graph attention layers and gated temporal convolution layers to extract hidden spatio-temporal features for wind speed predictions. A two-stage training strategy is proposed for long- and short-term patterns, with results integrated through an adaptive fusion module to enhance model performance. Experimental results using actual wind speed data demonstrate that the proposed approach improves wind speed prediction accuracy and effectively leverages directed correlations within the complex graph structures of real-world wind farms.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Short-term wind speed forecast based on WRF model
    Miao, Nan
    Liang, Likai
    Yang, Zhiqiang
    Journal of Computational Information Systems, 2014, 10 (03): : 943 - 950
  • [42] Ultra-short-term Wind Speed Forecasting Based on Spatio-temporal Graph Memory of Clustering Wind Turbine Group Association Topology
    Pan C.
    Jiang D.
    Li B.
    Sun Y.
    Hao C.
    Dianwang Jishu/Power System Technology, 2023, 47 (11): : 4607 - 4618
  • [43] Short-term load forecasting of regional integrated energy system based on spatio-temporal convolutional graph neural network
    Su, Zhonge
    Zheng, Guoqiang
    Hu, Miaosen
    Kong, Lingrui
    Wang, Guodong
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 232
  • [44] ST-LSTM: SPATIO-TEMPORAL GRAPH BASED LONG SHORT-TERM MEMORY NETWORK FOR VEHICLE TRAJECTORY PREDICTION
    Chen, Guangxi
    Hu, Ling
    Zhang, Qieshi
    Ren, Ziliang
    Gao, Xiangyang
    Cheng, Jun
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 608 - 612
  • [45] Dynamic adaptive spatio-temporal graph neural network for multi-node offshore wind speed forecasting
    Gao, Ziheng
    Li, Zhuolin
    Xu, Lingyu
    Yu, Jie
    APPLIED SOFT COMPUTING, 2023, 141
  • [46] An adaptive spatio-temporal graph recurrent network for short-term electric vehicle charging demand prediction
    Wang, Shengyou
    Li, Yuan
    Shao, Chunfu
    Wang, Pinxi
    Wang, Aixi
    Zhuge, Chengxiang
    APPLIED ENERGY, 2025, 383
  • [47] A very short-term adaptive wind power forecasting method based on spatio-temporal correlation
    Zhao Y.
    Li Z.
    Ye L.
    Pei M.
    Song X.
    Luo Y.
    Yu Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (06): : 94 - 105
  • [48] Long Short Term Spatio-temporal Neural Network for Traffic Speed Forecasting
    Feng, Shuaihao
    Zhang, Dalong
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1777 - 1780
  • [49] STGATP: A Spatio-Temporal Graph Attention Network for Long-Term Traffic Prediction
    Zhu, Mengting
    Zhu, Xianqiang
    Zhu, Cheng
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 255 - 266
  • [50] Dynamic Neural Network Based Very Short-Term Wind Speed Forecasting
    Babu, Ramesh N.
    Arulmozhivarman, P.
    WIND ENGINEERING, 2014, 38 (02) : 121 - 128