A Solid-Solution with Asymmetric Ni-O-Cr Sites for Boosting Protonation toward Anodic Oxidation

被引:38
作者
Feng, Yihan [1 ,2 ]
Wang, Xunlu [2 ]
Ma, Junqing [2 ]
Wang, Nan [1 ]
Liu, Qiunan [3 ]
Suenaga, Kazu [3 ]
Chen, Wei [4 ]
Zhang, Jitang [1 ]
Zhou, Yin [5 ]
Wang, Jiacheng [1 ,2 ,6 ]
机构
[1] Taizhou Univ, Inst Electrochem, Sch Mat Sci & Engn, Zhejiang Key Lab Isl Green Energy & New Mat, Taizhou 318000, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
[3] Osaka Univ, Inst Sci & Ind Res ISIR SANKEN, Osaka 5670047, Japan
[4] Univ Buffalo State Univ New York, Dept Mat Design & Innovat, Buffalo, NY 14260 USA
[5] Taizhou Univ, Sch Mech & Elect Engn, Taizhou 225300, Jiangsu, Peoples R China
[6] North China Univ Sci & Technol, Coll Mat Sci & Engn, Hebei Prov Key Lab Inorgan Nonmet Mat, Tangshan 063210, Peoples R China
基金
中国国家自然科学基金;
关键词
alcohol oxidation; asymmetric sites; protonation; solid-solution electrocatalysts; theoretical calculation; ELECTROOXIDATION; OXYGEN;
D O I
10.1002/aenm.202401501
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Replacing the slow protonation process of oxygen evolution reaction (OER) with the fast protonation of alcohol electro-oxidation can decrease the driving potentials, thus improving overall efficiency of electrochemical devices. However, the formation of effective catalytic sites for alcohol oxidation remains challenging in accelerating protonation to inhibit metal leaching and improve catalyst stability. Herein, asymmetric Ni-O-Cr sites are constructed by alloying Cr into the NiO matrix to optimize coordination environments, showing significantly enhanced stability during alcohol electro-oxidation. The asymmetric Ni-O-Cr can maintain constant valence states of Cr and Ni during alcohol oxidation, efficiently suppressing metal dissolution even at high oxidation potentials. In situ electrochemical characterizations combined with theoretical calculations indicate that asymmetric Ni-O-Cr can improve adsorption and activation of OH* and alcohol molecules compared to pure NiO, thus increasing anodic kinetics. The theoretical results also indicate that the smaller gap of Ni 3d-O 2p in asymmetric Ni-O-Cr strengthens charge transfer, leading to fast protonation of catalytic sites with enhanced stability. This work gives insights into boosting anodic protonation using asymmetric sites-enriched solid-solution electrocatalysts. A solid-solution with asymmetric Ni-O-Cr sites can maintain constant valence states of Cr and Ni even at high potentials for boosted protonation process, thus inhibiting Ni and Cr dissolution and enhancing long-term operation stability. Cr alloying also lowers anodic overpotentials by optimizing Ni site coordination environments via Ni-O-Cr bridge. image
引用
收藏
页数:11
相关论文
共 34 条
[1]   Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation [J].
Chen, Wei ;
Xie, Chao ;
Wang, Yanyong ;
Zou, Yuqin ;
Dong, Chung-Li ;
Huang, Yu-Cheng ;
Xiao, Zhaohui ;
Wei, Zengxi ;
Du, Shiqian ;
Chen, Chen ;
Zhou, Bo ;
Ma, Jianmin ;
Wang, Shuangyin .
CHEM, 2020, 6 (11) :2974-2993
[2]   Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation [J].
Dong, Chenlong ;
Yuan, Xiaotao ;
Wang, Xin ;
Liu, Xiangye ;
Dong, Wujie ;
Wang, Ruiqi ;
Duan, Yuhang ;
Huang, Fuqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (29) :11292-11298
[3]   Phase-Controllable Growth NixPy Modified CdS@Ni3S2 Electrodes for Efficient Electrocatalytic and Enhanced Photoassisted Electrocatalytic Overall Water Splitting [J].
Dong, Qianwen ;
Li, Mingli ;
Sun, Mingshuang ;
Si, Fangyuan ;
Gao, Qiongzhi ;
Cai, Xin ;
Xu, Yuehua ;
Yuan, Teng ;
Zhang, Shengsen ;
Peng, Feng ;
Fang, Yueping ;
Yang, Siyuan .
SMALL METHODS, 2021, 5 (11)
[4]   Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation [J].
Duan, Yan ;
Lee, Jun Yan ;
Xi, Shibo ;
Sun, Yuanmiao ;
Ge, Jingjie ;
Ong, Samuel Jun Hoong ;
Chen, Yubo ;
Dou, Shuo ;
Meng, Fanxu ;
Diao, Caozheng ;
Fisher, Adrian C. ;
Wang, Xin ;
Scherer, Gunther G. ;
Grimaud, Alexis ;
Xu, Zhichuan J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :7418-7425
[5]   Achieving High-Power and Dendrite-Free Lithium Metal Anodes via Interfacial Ion-Transport-Rectifying Pump [J].
Feng, Yang ;
Zhong, Beidou ;
Zhang, Ruochen ;
Peng, Maoyu ;
Hu, Zhe ;
Wu, Zhonghan ;
Deng, Nanping ;
Zhang, Wang ;
Zhang, Kai .
ADVANCED ENERGY MATERIALS, 2023, 13 (12)
[6]   Electrodeposited Ni-Cr2O3 nanocomposite anodes for ethanol electrooxidation [J].
Hassan, H. B. ;
Hamid, Z. Abdel .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (08) :5117-5127
[7]   Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide [J].
He, Zuyun ;
Hwang, Jinwoo ;
Gong, Zhiheng ;
Zhou, Mengzhen ;
Zhang, Nian ;
Kang, Xiongwu ;
Han, Jeong Woo ;
Chen, Yan .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea [J].
Huang, Shoushuang ;
Wu, Ye ;
Fu, Jie ;
Xin, Peijun ;
Zhang, Qian ;
Jin, Zhiqiang ;
Zhang, Jie ;
Hu, Zhangjun ;
Chen, Zhiwen .
NANOTECHNOLOGY, 2021, 32 (38)
[9]   High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C-SiC/Diamond Junctions for Practical Device Processes [J].
Kagawa, Ryo ;
Cheng, Zhe ;
Kawamura, Keisuke ;
Ohno, Yutaka ;
Moriyama, Chiharu ;
Sakaida, Yoshiki ;
Ouchi, Sumito ;
Uratani, Hiroki ;
Inoue, Koji ;
Nagai, Yasuyoshi ;
Shigekawa, Naoteru ;
Liang, Jianbo .
SMALL, 2024, 20 (13)
[10]   Tailoring Co3d and O2p Band Centers to Inhibit Oxygen Escape for Stable 4.6 V LiCoO2 Cathodes [J].
Kong, Weijin ;
Zhang, Jicheng ;
Wong, Deniz ;
Yang, Wenyun ;
Yang, Jinbo ;
Schulz, Christian ;
Liu, Xiangfeng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (52) :27102-27112