Toxicological effects of nanoparticles in plants: Mechanisms involved at morphological, physiological, biochemical and molecular levels

被引:17
|
作者
Gowtham, H. G. [1 ]
Shilpa, N. [2 ]
Singh, S. Brijesh [3 ]
Aiyaz, Mohammed [4 ]
Abhilash, M. R. [5 ]
Nataraj, K. [3 ]
Amruthesh, K. N. [3 ]
Ansari, Mohammad Azam [6 ]
Alomary, Mohammad N. [7 ]
Murali, M. [3 ]
机构
[1] KSOU, Dept Studies & Res Food Sci & Nutr, Mysuru 570006, Karnataka, India
[2] Univ Mysore, Dept Studies Microbiol, Mysuru 570006, Karnataka, India
[3] Univ Mysore, Dept Studies Bot, Mysuru 570006, Karnataka, India
[4] Univ Mysore, Dept Studies Biotechnol, Mysuru 570006, Karnataka, India
[5] Univ Mysore, Dept Studies Environm Sci, Mysuru 570006, Karnataka, India
[6] Imam Abdulrahman Bin Faisal Univ, Inst Res & Med Consultat IRMC, Dept Epidem Dis Res, Dammam 31441, Saudi Arabia
[7] King Abdulaziz City Sci & Technol KACST, Adv Diagnost & Therapeut Inst, Riyadh 11442, Saudi Arabia
关键词
Antioxidant; Genotoxicity; Nanoparticles; Nanopollution; Nanoremediation; Phytotoxicity; Photosynthesis; ZINC-OXIDE NANOPARTICLES; LEMNA-MINOR L; SILVER NANOPARTICLES; ARABIDOPSIS-THALIANA; FE3O4; NANOPARTICLES; TOXICITY; GROWTH; IMPACT; RESPONSES; IONS;
D O I
10.1016/j.plaphy.2024.108604
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The rapid advancement of nanotechnology has led to unprecedented innovations across diverse industries, including pharmaceuticals, agriculture, cosmetics, electronics, textiles, and food, owing to the unique properties of nanoparticles. The extensive production and unregulated release of synthetic nanoparticles may contribute to nanopollution within the ecosystem. In the agricultural sector, nanotechnology is increasingly utilized to improve plant productivity, enhance resistance to stressors, and reduce the usage of chemicals. However, the uncontrolled discharge of nanoparticles into the natural environment raises concerns regarding possible plant toxicological impacts. The review focuses on the translocation of these particles within the plants, emphasizing their phytotoxicological effects at morphological, physiological, biochemical, and molecular levels. Eventhough the beneficial aspects of these nanoparticles are evident, excessive usage of nanoparticles at higher concentrations may lead to potential adverse effects. The phytotoxicity resulting from excessive amounts of nanoparticles affects seed germination and biomass production, disrupts the photosynthesis system, induces oxidative stress, impacts cell membrane integrity, alters gene expression, causes DNA damage, and leads to epigenetic variations in plants. Nanoparticles are found to directly associate with the cell membrane and cell organelles, leading to the dissolution and release of toxic ions, generation of reactive oxygen species (ROS) and subsequent oxidative stress. The present study signifies and accumulates knowledge regarding the application of nanoparticles in agriculture and illustrates a clear picture of their possible impacts on plants and soil microbes, thereby paving the way for future developments in nano-agrotechnology. The review concludes by addressing current challenges and proposing future directions to comprehend and mitigate the possible biological risks associated with nanoparticles in agriculture.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels
    Al-Khayri, Jameel Mohammed
    Rashmi, Ramakrishnan
    Ulhas, Rutwick Surya
    Sudheer, Wudali N.
    Banadka, Akshatha
    Nagella, Praveen
    Aldaej, Mohammed Ibrahim
    Rezk, Adel Abdel-Sabour
    Shehata, Wael Fathi
    Almaghasla, Mustafa Ibrahim
    PLANTS-BASEL, 2023, 12 (02):
  • [2] Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review
    Etesami, Hassan
    Fatemi, Hamideh
    Rizwan, Muhammad
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2021, 225
  • [3] Physiological, biochemical, and molecular mechanisms of plants towards nanopollution
    Venkidasamy, Baskar
    Thiruvengadam, Muthu
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 215
  • [4] Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms
    Sharma, Mansi
    Tisarum, Rujira
    Kohli, Ravinder Kumar
    Batish, Daizy R.
    Cha-um, Suriyan
    Singh, Harminder Pal
    PLANTA, 2024, 259 (06)
  • [5] Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants
    Hasanuzzaman, Mirza
    Nahar, Kamrun
    Alam, Md Mahabub
    Roychowdhury, Rajib
    Fujita, Masayuki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (05) : 9643 - 9684
  • [6] Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms
    Landa, Premysl
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 161 : 12 - 24
  • [7] Morphological, physiological and biochemical responses of plants to drought stress
    Anjum, Shakeel Ahmad
    Xie, Xiao-yu
    Wang, Long-chang
    Saleem, Muhammad Farrukh
    Man, Chen
    Lei, Wang
    AFRICAN JOURNAL OF AGRICULTURAL RESEARCH, 2011, 6 (09): : 2026 - 2032
  • [8] Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels
    Varo, Inmaculada
    Perini, Aurora
    Torreblanca, Amparo
    Garcia, Yaiza
    Bergami, Elisa
    Vannuccini, Maria L.
    Corsi, Ilaria
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 675 : 570 - 580
  • [9] A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures
    Wang, Que
    Wu, Yaqiong
    Wu, Wenlong
    Lyu, Lianfei
    Li, Weilin
    PLANTA, 2024, 259 (03)
  • [10] A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures
    Que Wang
    Yaqiong Wu
    Wenlong Wu
    Lianfei Lyu
    Weilin Li
    Planta, 2024, 259