共 3 条
Rapid and versatile, micro-patterning and functionalization of complex structures on ultra-thin and flexible polymeric substrates
被引:0
|作者:
Cunaj, E.
[1
]
Gogolides, E.
[1
,3
]
Tserepi, A.
[1
,3
]
Ellinas, K.
[1
,2
]
机构:
[1] NCSR Demokritos, Nanoplasmas PC, TEPA Lefkippos, Aghia Paraskevi 15341, Attiki, Greece
[2] Univ Aegean, Sch Environm, Dept Food Sci & Nutr, Lab Adv Funct Mat & Nanotechnol, Leoforos Dimokratias 66, GR-81400 Myrina, Lemnos, Greece
[3] Inst Nanosci & Nanotechnol NCSR Demokritos, Aghia Paraskevi 15341, Attiki, Greece
来源:
MICRO AND NANO ENGINEERING
|
2024年
/
24卷
关键词:
Flexible microfluidics;
micro patterning;
Wetting control;
Pattern transfer;
MEMS;
Rapid prototyping;
DRY FILM PHOTORESIST;
SOFT-LITHOGRAPHY;
MICROFLUIDICS;
CHIP;
MICROFABRICATION;
FABRICATION;
SURFACES;
LAB;
D O I:
10.1016/j.mne.2024.100273
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Microscale patterning on flexible substrates is important in many applications such as in wearable sensors and microfluidics-based diagnostics, therefore low-cost fabrication methods which are scalable and amenable to mass production have attracted the interest of many companies and research groups. Dry film resists (DFRs) are commercially available materials with properties compatible with their implementation on flexible substrates to cover a wide range of applications, which also offer environmental and sustainability benefits due to the low waste generation compared to the liquid resists. However, there are limited detailed reports in the literature regarding the use of DFRs for the fabrication of microfluidic channels or other micropatterns (i.e., posts) on thin and flexible substrates. Herein we present in detail the fabrication of: a) microfluidic channels of width ranging from 50 mu m up to 800 mu m, and depth ranging from 30 mu m up to 270 mu m and b) square posts 80 mu m x 80 mu m in size and 30 mu m in height. Particularly, our method enables the fabrication of ultra-deep microchannels (depth > 250 mu m), highly ordered post arrays over large area (appr. 60 cm(2)), as well as complex designs with hierarchical scale features (80 mu m posts inside 800 mu m microchannels or micro-nanotexturing inside microchannels) on ultra-thin flexible substrates. To demonstrate the versatility of the method, three different DFRs were used on ultra-thin (30 mu m), flexible, single-sided copper-clad polyimide substrates. It is also demonstrated that DFRs can be effectively modified using plasma etching to tune the surface wetting properties towards applications such as pumpless capillary action, where such functionality is required.
引用
收藏
页数:11
相关论文