Consistent land use and land cover classification across 20 years of various high-resolution images for detecting soil sealing in Murcia, Spain

被引:1
作者
Illan-Fernandez, Emilio Jose [1 ]
Tiede, Dirk [2 ]
Sudmanns, Martin [2 ]
机构
[1] Univ Murcia, Dept Geog, Santo Cristo 1, Murcia 30001, Spain
[2] Univ Salzburg, Dept Geoinformat Z GIS, Schillerstr 30, A-5020 Salzburg, Austria
关键词
Land cover; Google earth engine; Soil sealing; Random forest; URBAN LAND; IMPERVIOUS SURFACE; RANDOM FOREST; DATA FUSION; ACCURACY; IMPACTS; CLIMATE; MULTISENSOR; MANAGEMENT; DYNAMICS;
D O I
10.1016/j.rsase.2024.101223
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Artificial human-induced soil sealing has numerous negative consequences. The extent of impervious surfaces is a key indicator of the location and intensity of human activity; however, it is also proof of damage to the natural environment as a result of the sealing and modification of ecosystems. Remote sensing techniques can help detect and monitor changes in land use and cover over an extended period. However, the limited availability of consistent satellite images with high spatiotemporal resolutions covering several decades poses major challenges for achieving high overall classification accuracy. An accurate methodology for the multitemporal detection of artificial land cover classes was developed and applied to a case study of the metropolitan area of Murcia (Spain) with its challenging landscape conditions due to the frequent presence of bare soil. For this purpose, a variety of high-resolution satellite images from SPOT 5, Rapid Eye, and PlanetScope covering a period of 20 years were used. To improve the automated detection of built-up areas, the reflectance values of the images, normalised difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), and a building surface digital model were used as inputs for the supervised classification model. We applied a random forest algorithm to non-public, high-resolution images in the Google Earth Engine (GEE) as a processing environment to identify eight target land cover classes. The results show that the proposed methodology leads to a substantial improvement, after including the indices and the digital building model, in the overall accuracy (from 93.16 to 95.97%) and in all classes. This improvement was significant for the artificial classes and was particularly noticeable for the built-up areas (from 91.1 to 95.64%) because their confusion with bare soil was considerably reduced. This work demonstrates the effectiveness of the building-surface digital model as a tool for training the classification model, as it reduces uncertainty in confusion with other spectrally similar classes and its applicability to multisource imagery.
引用
收藏
页数:13
相关论文
共 91 条
[1]   Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data [J].
Abdi, Abdulhakim Mohamed .
GISCIENCE & REMOTE SENSING, 2020, 57 (01) :1-20
[2]  
[Anonymous], 2018, WORLD URBANIZATION P
[3]   Assessment of Soil Sealing Management Responses, Strategies, and Targets Toward Ecologically Sustainable Urban Land Use Management [J].
Artmann, Martina .
AMBIO, 2014, 43 (04) :530-541
[4]   Extracting impervious surfaces from full polarimetric SAR images in different urban areas [J].
Attarchi, Sara .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) :4642-4661
[5]   District-based urban expansion monitoring using multitemporal satellite data: application in two mega cities [J].
Azabdaftari, Anali ;
Sunar, Filiz .
ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (05)
[6]   Landsat analysis of urban growth: How Tokyo became the world's largest megacity during the last 40 years [J].
Bagan, Hasi ;
Yamagata, Yoshiki .
REMOTE SENSING OF ENVIRONMENT, 2012, 127 :210-222
[7]   Soil compaction and soil management - a review [J].
Batey, T. .
SOIL USE AND MANAGEMENT, 2009, 25 (04) :335-345
[8]   Assessing desertification risk in the semi-arid highlands of central Mexico [J].
Becerril-Pina, Rocio ;
Alberto Mastachi-Loza, Carlos ;
Gonzalez-Sosa, Enrique ;
Diaz-Delgado, Carlos ;
Ba, Khalidou M. .
JOURNAL OF ARID ENVIRONMENTS, 2015, 120 :4-13
[9]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[10]  
Benedetti A, 2018, INT GEOSCI REMOTE SE, P1962, DOI 10.1109/IGARSS.2018.8517586