Semantics-Enhanced Temporal Graph Networks for Content Popularity Prediction

被引:4
|
作者
Zhu, Jianhang [1 ]
Li, Rongpeng [1 ]
Chen, Xianfu [2 ]
Mao, Shiwen [3 ]
Wu, Jianjun [4 ]
Zhao, Zhifeng [1 ,5 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] VTT Tech Res Ctr Finland, Oulu 90570, Finland
[3] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[4] Huawei Technol Co Ltd, Shanghai 201206, Peoples R China
[5] Zhejiang Lab, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Predictive models; Bipartite graph; Biological system modeling; Streaming media; Computational modeling; Graph neural networks; Content caching; dynamic graph neural network; popularity prediction; semantics;
D O I
10.1109/TMC.2023.3349315
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The surging demand for high-definition video streaming services and large neural network models implies a tremendous explosion of Internet traffic. To mitigate the traffic pressure, architectures with in-network storage have been proposed to cache popular contents at devices in closer proximity to users. Correspondingly, in order to maximize caching utilization, it becomes essential to devise an effective popularity prediction method. In that regard, predicting popularity with dynamic graph neural network (DGNN) models achieves remarkable performance. However, DGNN models still suffer from tackling sparse datasets where most users are inactive. Therefore, we propose a reformative temporal graph network, named semantics-enhanced temporal graph network (STGN), which attaches extra semantic information into the user-content bipartite graph and could better leverage implicit relationships behind the superficial topology structure. On top of that, we customize its temporal and structural learning modules to further boost the prediction performance. Specifically, in order to efficiently aggregate the diversified semantics that a content might possess, we design a user-specific attention (UsAttn) mechanism for the temporal learning. Unlike the attention mechanism that only analyzes the influence of genres on content, UsAttn also considers the attraction of semantic information to a specific user. Meanwhile, as for the structural learning, we introduce the concept of positional encoding into our attention-based graph learning and novelly adopt a semantic positional encoding (SPE) function, which effectively boost the performance of lightweight algorithms. Finally, extensive simulations verify the superiority of our models and demonstrate their effectiveness in content caching.
引用
收藏
页码:8478 / 8492
页数:15
相关论文
共 50 条
  • [31] Knowledge Enhanced Graph Neural Networks for Explainable Recommendation
    Lyu, Ziyu
    Wu, Yue
    Lai, Junjie
    Yang, Min
    Li, Chengming
    Zhou, Wei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4954 - 4968
  • [32] Edge-Enriched Graph Transformer for Multiagent Trajectory Prediction With Relative Positional Semantics
    Zhang, Ting
    Fu, Mengyin
    Yang, Yi
    Song, Wenjie
    Liu, Tong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [33] Temporal Aggregation and Propagation Graph Neural Networks for Dynamic Representation
    Zheng, Tongya
    Wang, Xinchao
    Feng, Zunlei
    Song, Jie
    Hao, Yunzhi
    Song, Mingli
    Wang, Xingen
    Wang, Xinyu
    Chen, Chun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10151 - 10165
  • [34] CLSA: Contrastive-Learning-Based Survival Analysis for Popularity Prediction in MEC Networks
    Hajiakhondi-Meybodi, Zohreh
    Mohammadi, Arash
    Abouei, Jamshid
    Plataniotis, Konstantinos N.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 6352 - 6367
  • [35] Graph representation learning for popularity prediction problem: A survey
    Chen, Tiantian
    Guo, Jianxiong
    Wu, Weili
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [36] Popularity Prediction via Modeling Temporal Dependencies on Dynamic Evolution Process
    Bao, Peng
    Yan, Rong
    Yang, Caipiao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6828 - 6838
  • [37] Enhanced Location Prediction for Wargaming with Graph Neural Networks and Transformers
    Liang, Dingge
    Li, Junliang
    Yin, Junping
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [38] A Spatio-Temporal Tensor Graph Neural Network-Based Method for Node-Link Prediction in Port Networks
    Xia, Zhixin
    Zheng, Zhangqi
    Wei, Feiyang
    Liu, Yongshan
    Yu, Lu
    IEEE ACCESS, 2025, 13 : 61675 - 61684
  • [39] Temporal Enhanced Multimodal Graph Neural Networks for Fake News Detection
    Qu, Zhibo
    Zhou, Fuhui
    Song, Xi
    Ding, Rui
    Yuan, Lu
    Wu, Qihui
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (06): : 7286 - 7298
  • [40] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348