An attention mechanism and residual network based knowledge graph-enhanced recommender system

被引:2
|
作者
Li, Weisheng [1 ,2 ]
Zhong, Hao [1 ,2 ]
Zhou, Junming [1 ]
Chang, Chao [2 ,3 ]
Lin, Ronghua [1 ,2 ]
Tang, Yong [1 ,2 ]
机构
[1] South China Normal Univ, Sch Comp Sci, Guangzhou 510631, Peoples R China
[2] Pazhou Lab, Guangzhou 510330, Peoples R China
[3] Guangzhou Panyu Polytech, Sch Informat Engn, Guangzhou 511483, Peoples R China
关键词
Knowledge graph; Recommender system; Residual network; Attention mechanism;
D O I
10.1016/j.knosys.2024.112042
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems enhanced by a knowledge graph (KG) have attained widespread popularity and attention in recent years. However, traditional KG -based recommender systems encounter the challenge gradient explosion as the network depth increases. Additionally, the abundance of unreliable paths in KG has a detrimental impact on feature representation learning. In this article, we propose a KG -enhanced recommender system based on residual network and attention mechanism, which can capture high -order connectivity and long-range dependencies of the KG. Specifically, a resource allocation approach is employed to calculate the resource amount, which is subsequently utilized to evaluate the path reliability of the KG. After completing path extraction, we employ an attention mechanism to capture semantic correlations and structural information. To leverage the KG for enhancing recommender systems, we design a deep residual network with shortcut connections, effectively amalgamating advanced and abstract features using deep neural networks. The introduction of shortcut connections not only facilitates the fitting of residual mappings but also mitigates potential issues such as gradient explosion and convergence difficulties due to excessive network depth. Extensive experiments conducted on three standard datasets over baseline methods have demonstrated the superiority of our proposed recommender system.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Knowledge Graph-Enhanced Attention Aggregation Network for Making Recommendations
    Zhang, Dehai
    Yang, Xiaobo
    Liu, Linan
    Liu, Qing
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [2] Knowledge Graph-Enhanced Sampling for Conversational Recommendation System
    Zhao, Mengyuan
    Huang, Xiaowen
    Zhu, Lixi
    Sang, Jitao
    Yu, Jian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 9890 - 9903
  • [3] A bias-based graph attention neural network recommender algorithm
    Wang J.-F.
    Wen X.-L.
    Yang X.
    Zhang Q.-L.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (07): : 1705 - 1712
  • [4] Enhanced Multi-Task Learning and Knowledge Graph-Based Recommender System
    Gao, Min
    Li, Jian-Yu
    Chen, Chun-Hua
    Li, Yun
    Zhang, Jun
    Zhan, Zhi-Hui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10281 - 10294
  • [5] Knowledge Graph-Enhanced Neural Query Rewriting
    Farzana, Shahla
    Zhou, Qunzhi
    Ristoski, Petar
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 911 - 919
  • [6] Knowledge Concept Recommender Based on Structure Enhanced Interaction Graph Neural Network
    Ling, Yu
    Shan, Zhilong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 173 - 186
  • [7] Traffic data imputation via knowledge graph-enhanced generative adversarial network
    Liu, Yinghui
    Shen, Guojiang
    Liu, Nali
    Han, Xiao
    Xu, Zhenhui
    Zhou, Junjie
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [8] A Knowledge-Aware Recommender with Attention-Enhanced Dynamic Convolutional Network
    Liu, Yi
    Li, Bohan
    Zang, Yalei
    Li, Aoran
    Yin, Hongzhi
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1079 - 1088
  • [9] A BP Neural Network Based Recommender Framework With Attention Mechanism
    Wang, Chang-Dong
    Xi, Wu-Dong
    Huang, Ling
    Zheng, Yin-Yu
    Hu, Zi-Yuan
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3029 - 3043
  • [10] HRS: Hybrid Recommendation System based on Attention Mechanism and Knowledge Graph Embedding
    Dong, Chunfang
    Ju, Xuchan
    Ma, Yue
    PROCEEDINGS OF 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS AND SPECIAL SESSIONS: (WI-IAT WORKSHOP/SPECIAL SESSION 2021), 2021, : 406 - 413