Heat pipe/phase change material passive thermal management of power battery packs under different driving modes

被引:2
|
作者
Bian, Xiangfen [1 ]
Tao, Hanzhong [1 ]
Li, Yannan [1 ]
Chu, Zhiliang [1 ]
Bai, Xiaoyue [1 ]
Xian, Yupeng [1 ]
Yang, Lu [1 ]
Zhang, Ziying [1 ]
机构
[1] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Peoples R China
关键词
Battery Module; Heat pipe; Phase change material; BTM; Dynamic road conditions; PHASE-CHANGE MATERIAL; PERFORMANCE; SYSTEM;
D O I
10.1016/j.applthermaleng.2024.123172
中图分类号
O414.1 [热力学];
学科分类号
摘要
In Fluent's study of battery thermal dissipation in real driving mode. A passive battery thermal management (BTM) strategy based on heat pipe/phase change material (HP/PCM) coupling is proposed. The effects of different PCMs (including RT-31 and Paraffine-EG), HP, coupling systems, and different driving conditions (including constant speed, hill climbing, and dynamic driving) on the thermal behavior of the battery module are investigated. The results showed that: (1) the two coupling systems, HP/RT-31 and HP/Paraffin-EG, have lower battery surface temperatures and better overall temperature uniformity compared to the no HP/PCM, HP alone, and PCM alone. Battery maximum temperatures were reduced by more than 10 % compared to no HP/PCM. The temperature reductions were 1.48 K and 0.67 K compared to HP only, and 3.1 K and 3.4 K compared to RT-31 only and Paraffin-EG only, respectively. Where HP dominated the reduction of the maximum temperature, and PCM played a key role in maintaining temperature uniformity. (2) Under different uniform driving conditions, the coupling system exhibits more significant temperature reduction at higher speeds, with a maximum temperature reduction of 13.9 % at 120 km/h driving. (3) Uphill driving in high temps lowers resistance, boosts electrochemical activity, slows temp rise, and reduces temperature difference. The passive thermal management system designed in this paper, not only makes the battery temperature rise effectively but also has important significance in improving energy utilization and reducing the additional energy consumption of power batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Hybrid battery thermal management by coupling fin intensified phase change material with air cooling
    Ahmad, Shakeel
    Liu, Yanhui
    Khan, Shahid Ali
    Hao, Menglong
    Huang, Xinyan
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [42] A phase change/metal foam heatsink for thermal management of battery packs
    Veismoradi, Ali
    Modir, Alireza
    Ghalambaz, Mohammad
    Chamkha, Ali
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2020, 157
  • [43] Investigation on the effects of temperature equilibrium strategy in battery thermal management using phase change material
    Huo, Yutao
    Pang, Xiaowen
    Rao, Zhonghao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7660 - 7673
  • [44] Assessment of Thermal Management Using a Phase-Change Material Heat Sink under Cyclic Thermal Loads
    Ye, Fangping
    Dong, Yufan
    Opolot, Michael
    Zhao, Luoguang
    Zhao, Chunrong
    ENERGIES, 2024, 17 (19)
  • [45] Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management
    Zhao, Jiateng
    Rao, Zhonghao
    Liu, Chenzhen
    Li, Yimin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 99 : 252 - 260
  • [46] An energy-saving battery thermal management strategy coupling tubular phase-change-material with dynamic liquid cooling under different ambient temperatures
    Wng, Jingwen
    Xiao, Changren
    Yang, Xiaoqing
    Ouyang, Dongxu
    Chen, Mingyi
    Zhang, Guoqing
    Waiming, Eric Lee
    Yuen, Richard Kwowk Kit
    Wang, Jian
    RENEWABLE ENERGY, 2022, 195 : 918 - 930
  • [47] Thermal Performance of Nanofluid Charged Heat Pipe With Phase Change Material for Electronics Cooling
    Chougule, Sandesh S.
    Sahu, S. K.
    JOURNAL OF ELECTRONIC PACKAGING, 2015, 137 (02)
  • [48] Thermal designs for mobile phones cooled with use of phase change material and heat pipe
    Tan, F.-L. (Mfltan@ntu.Edu.Sg), 1600, Inderscience Enterprises Ltd. (18): : 411 - 432
  • [49] Experimental investigations of a novel phase change material and nano enhanced phase change material based passive battery thermal management system for Li-ion battery discharged at a high C rate
    Bais, Aditya
    Subhedar, Dattatraya
    Panchal, Satyam
    JOURNAL OF ENERGY STORAGE, 2024, 103
  • [50] Influence of phase change material dosage on the heat dissipation performance of the battery thermal management system
    Zhang, Wencan
    Liang, Zhicheng
    Ling, Guozhi
    Huang, Liansheng
    JOURNAL OF ENERGY STORAGE, 2021, 41